

Novel Plastic Microchannel-Based Direct Fast Neutron Detection

D. Beaulieu, P. de Rouffignac, D. Gorelikov, H. Klotzsch, J. Legere*, J. Ryan*, K. Saadatmand, K. Stenton, <u>N. Sullivan</u>, A. Tremsin Arradiance Inc., Sudbury MA * UNH EOS, Durham, NH

Arradiance Inc. 142 North Road, Suite F-150 Sudbury, MA 01776 (800) 659-2970 Tel and Fax www.arradiance.com

© 2008 Arradiance® Corporation. All rights reserved.

2

Outline

- Microchannel plate (MCP) background
- Arradiance functional thin film technology
 - Atomic Layer Deposition (ALD)
- Substrate independent MCP technology
 - Secondary electron emissive films
 - Conductive films
- Fast neutron MCP detector
 - Concept
 - Functionality
 - Simulation
- Fast neutron MCP detector experimental
- Fast neutron MCP detector results
- Summary and Future Work

MicroChannel Plate (MCP) Technology

Wiza, Nuclear Inst. & Meth., Vol 162, 1979, 587

© 2008 Arradiance[®] Corporation. All rights reserved.

ALD MCP Technology

ALD:

- Device optimization is decoupled from substrate.
- Semiconductor processes & process control.
- Materials engineering at the nanoscale
- Functional films composed of abundant, non-toxic materials.
- Advantages:
 - High conformality (>500:1)
 - Scalable to large areas
 - Digital thickness control
 - Pure films
 - Control over film composition
 - Low deposition temperatures (50-300°C)

- Thin film growth that relies on self-limiting surface reactions
- Gas A reacts with a surface
 - excess precursor & reaction byproduct removed.
- Gas B is introduced to the evacuated chamber – reacts with surface bound A
 - excess precursor & reaction byproduct removed.
- Repetition of A B pulse sequence to build film layer-bylayer

ALD Functional Films: Substrate Independent MCP

ŧ

SE yields >5 possible vs MCP < 3</p>

Conductivity range > 7 orders of magnitude

 Ohmic conduction, Stable in applied E field, TCR < 1%

10 µm pore, Soda Lime glass substrate, 40:1 L/D, R~280 MW

5-10x gain increase vs. commercial MCPs

© 2008 Arradiance[®] Corporation. All rights reserved.

Fast Neutron Detection Technology

- Hydrogen-rich PMMA MCP
- Graded Temperature ALD
 - Active films deposition at 140C
- Proton initiated electron cascade
- Output pulse 10³ 10⁶ electrons
- Standard readout electronics

Timing histogram of events detected under 120Hz-modulated UV illumination.

© 2008 Arradiance[®] Corporation. All rights reserved.

Fast Neutron Detection Simulation: P1 and P2 Probabilities

Fast Neutron Detection Simulation: P3 Probability and Event Timing

ns

Detector Hardware Experimental Setup

Isotope Sources: Experimental Setup

	Am-241	Cs-137	C-60	Cf-252
	1.9 mQ	760 μQ	43.7 μQ	
Gamma (keV)	36% @ 60, 38% @ 12-22	661	1.17; 1.33	
Flux MCP/s	1.76x10⁵	7.03x10 ⁴	8.08x10 ³	~107

No filters

1" Pb

- Isotopes ~15cm from liquid scintillator detector spectra collected over 110s (real time).
- Mesytec MPD-4. is used to record PMT data

2.5" Wax

Gamma Isotope Sources MCP Results Summary

PMMA, 2mm, > 100k 50 µm Pores, 20µm wall

 γ isotopic sources

 Gamma E (eV)
 QE

 4.00E+04
 9.26E-05

 6.61E+05
 2.06E-03

 1.20E+06
 5.22E-03

11

Cf-252 MCP Experimental Results Summary

Counts in 96 seconds detected by PMMA MCP only (chevron subtracted)

D-T Source (Thermo 320) Experimental Setup

Technical Specifications	
Neutron Yield	1.0E+08 n/s
Neutron Energy	14 MeV
Typical Lifetime	1,200 hours @ 1x10 ⁸ n/s
Pulse Rate	250 Hz to 20 kHz, continuous
Duty Factor	5% to 100%
Minimum Pulse Width	5 µsec
Pulse Rise Time	Less than 1.5 µsec
Pulse Fall Time	Less than 1.5 µsec
Maximum Accelerator Voltage	95 kV
Beam Current	60 µamps

Filters: Lead (2"), polyethylene (1", 2"), borated plastic (1")

Lead shielding around the detector

5 mm PMMA MCP, ~50 μm pores, 20 μm walls, 5° bias angle installed above a chevron stack of 50:1 L/D MCPs

D-T Source Experimental Results Summary

Predicted QE ~0.8%

© 2008 Arradiance[®] Corporation. All rights reserved.

Conclusions and Future Work

- Functional films Improved performance, substrate independence
 - Emissive Layer Optimized SE yield and tailored conductivity
 - Conductive layer "Ohmic" conduction, Low TCR
- First Plastic MCP results demonstrated
- Fast neutron detector demonstration
 - > 1% Neutron detection simulation target
 - 2mm MCP QE=0.003
 - 5mm MCP QE=0.012
 - < 0.1% Gamma detection "simulation" target</p>
 - Energy dependence QE=9.26x10⁻⁵ 5.22x10⁻³
- Future Work
 - ♦ Optimization for Neutron QE > 10%
 - Gamma Sensitivity
 - Energy Sensitivity < 500 keV</p>
 - Demonstrate timing < 1.5ns</p>

Acknowledgements

Prof. James Ryan

JUNIVERSITY of NEW HAMPSHIRE Institute for the Study of Earth, Oceans, and Space

• Dr. Richard Lanza

