

Novel microchannel plate device fabricated with atomic layer deposition

D.R. Beaulieu, D. Gorelikov, P. de Rouffignac, K. Saadatmand, K. Stenton, N. Sullivan, A.S. Tremsin

Arradiance Inc.

142 North Road, Suite F-150 Sudbury, MA 01776 (800) 659-2970 Tel and Fax www.arradiance.com

© 2008 Arradiance® Corporation. All rights reserved.

Outline

- Microchannel plate (MCP) background
- Key MCP film performance Metrics
- MCP functional thin film technology
 - Secondary electron emissive films
 - Conductive films
- Fast neutron detection application example

Summary

What is a Micro Channel Amplifier?

© 2008 Arradiance[®] Corporation. All rights reserved.

Areas of MCP detector applications

- Night vision goggles
- Mass spectroscopy
- Astrophysics
- Synchrotron instrumentation
- Biomedical research (FLIM, FRET,...)
- X-Ray and UV photon detection
- Neutron radiography and Bragg edge spectroscopy

Critical MCP processing: Manufacture

Substrate Fabrication

Repeated

TABLE 2

Wiza, Nuclear Inst. & Meth., Vol 162, 1979, 587

Elemental composition of MCP glass^a. 1" Etch-able Core Ζ Weight percent Element Lead Glass Rod 82 Pb 47.8 8 0 25.8 14 Si 18.2 Draw Tower 19 Κ 4.2 37 Rb 1.8 56 Ba 1.3 33 As 0.4 Stacked 55 Cs 0.2 11 Na 0.1 Draw Tower ⁸ Density – 4.0 g./cm³.

Substrate Functionalize

Furnace H₂ Firing Both conduction and emission layer produced simultaneously and cannot be optimized independently

(approximate percentages) Conventional 5-100mm Dia 8161 cladding glass SiO2 38% B2O3 0% AI2O3 0.24% Cs20 0.29% 0.2-0.3 mm thick Rb2O 3.7% MgO 0% CaO 015 2.05% BaO РЬО 50.5% Bi2O3 <0.04% Producing >5M As203 0% Sb2O3 320 2-10 um pores K2O 5.44% Na20

Fe2O3

Preferred cludding glass 37% 2.8% 1.35% 4.12% 0.85% 0.85% 2.25% 19.7% 26.6% 2.48% 0.65% 0.28% 0% (trace) 0.34% 0% (trace) 0.02% 0%

US Pat 6271511

Alternative MCP Substrates: Key Findings

- Substrate
 - Mechanical structure
 - Electrically insulating
- Conductive layer
 - Conformal & uniform
 - ← ~10¹⁴ Ohms/Sq
 - Low field effect
- Emissive layer
 - Conformal & uniform
 - High secondary yield
- MCP Device
 - 🔹 High Gain
 - Resistance stability and matching
 - Stable gain following "scrub"

MCP performance tied to glass composition

Channeltron electron multiplier handbook (Burle)

Resistance and transverse electric field

Secondary electron (SE) emissive layer materials

SE Yield vs Incident Energy

- Applied over commercial glass MCPs:
- 50:1 L/D, 4.8 mm pores,
 ~250 MW resistance
- 5x-10x gain increase

- ALD enables wide range of material selection
- SE yields range from ~1 to ~ 5 in energy region of interest
- MCP Pb-glass SE yield ~1-2

High Flux Stress induced charging

Conductive layer materials

- Controllable conductivity range over more than 7 orders of magnitude
- Ohmic conduction
- Stable resistance in the presence of applied field
- TCR < 1% comparable to Pb-glass
 MCP values

- 10 um pore, Soda Lime glass substrate, 40:1 L/D, R~280 MW,
- Stable resistance
- Typical exponential gain increase with bias
- Good gain ~ 40000 at 1000V bias
- Good TCR (comparable to glass MCP values)

Conductive layer materials

MCPs with conduction and emission films

10 μ m pore NO LEAD glass substrate, 40:1 L/D, Bias = 880V, I_{out}~0.4 pA/pore, gain under electron bombardment

Quickly reaches stable gain

Arradiance D2[™] Film Technology **Typical MCP Performance Enhancement**

GEM-D2[™] Performance

SE Yield Gain Enhancement

MCP Bias (V)

Fired MCP + D2 (865V)

1 I I I

0.01

Extracted Dose (C) with 30pA Input

Starting Gain

of

%

0.1

······ Fired MCP

Resistance Stability

Fired MCP + D2

% Change

1.0%

0.9%

0.8%

0.7%

0.6%

0.5%

% Change

500 550 600 650 700 750 800 850 900 950 1000

MCP Bias (V)

Extracted Dose (C) with 30pA Input

Results Using 5 um Dia Pore 50:1 LD 18mm Active Area MCP Structure

© 2009 Arradiance® Corporation. All rights reserved.

.....

0.001

© 2008 Arradiance[®] Corporation. All rights reserved.

······ Fired MCP (1000V)

11,000

10,000

9,000

8,000

7,000

6,000

5,000

4,000

0.0001

Gain

- Hydrogen-rich PMMA microchannel structure
- Graded Temperature ALD deposition
 - Active films deposition at 140C
- Neutron-proton recoil reaction within plastic at better than 1% efficiency
- Proton initiated secondary electron cascade
- Output pulse $10^3 10^6$ electrons
- Standard readout electronics
- Technology is scalable to large format

Output electrons

Secondary Electrons

Plastic substrate MCP

First Plastic MCP 50 um Pore Diameter R2D2 Process Measured vs CASCADE[™] Simulation

Measured Data	
	L

- First attempt on 50 µm pores
- Reasonable gain for electron amplification, Limited by L:D
- Uniform response
- Stable operation

ŧ

- Emission and conduction layers for MCP technology have been developed
- Emission layer improves the performance of glass MCPs
 - High gain
 - Longer lifetime
 - Reduced outgassing / ion feedback
- Substrate independent conduction and emission films open new possibilities
 - Large area micromachined and plastic substrates
 - Temperature compatibility over a wide range
 - Novel photocathode materials/configurations
 - Low noise no radioactive traces
 - Better uniformity / reproducibility / spatial resolution