

ALD of SnO₂ as the active component of a Plastic Microchannel-Based Direct Fast Neutron Detector

Philippe de Rouffignac, Neal Sullivan, Anton Tremsin, Dmitry Gorelikov, David Beaulieu - Arradiance

Adam Hock, Jaeyeong Heo, Roy Gordon – Harvard University

Arradiance Inc.

142 North Road, Suite F-150 Sudbury, MA 01776 (800) 659-2970 Tel and Fax www.arradiance.com

© 2010 Arradiance® Corporation. All rights reserved.

- Arradiance and the Microchannel Plate Amplifier (MCP)
- Motivation I & II
- Theory behind proposed device
- ALD/Film Requirements for Plastic MCP
- SnO₂ ALD Results
- Plastic MCP Beam line Results
 - Efficiency
 - Timing
- From the lab to the field

What is a Micro Channel Amplifier?

Very Fast – Very Low Noise - Charged Particle Amplifier

© 2010 Arradiance[®] Corporation. All rights reserved.

A 50 year old MEMS Process

Substrate Fabrication

Substrate Functionalize

Elemental composition of MCP glass^a. Weight percent Element Ζ 82 Рb 47.8 8 Ο 25.8 14 Si 18.2 19 Κ 4.2 37 Rb 1.8 56 Ba 1.3 33 As 0.4 55 Cs 0.2 11 Na 0.1 ⁸ Density – 4.0 g./cm³.

Wiza, Nuclear Inst. & Meth., Vol 162, 1979, 587

TABLE 2

Furnace H₂ Firing Both conduction and emission layer produced simultaneously; cannot be optimized independently

© 2010 Arradiance[®] Corporation. All rights reserved.

Arradiance MCP Technology

- Substrate
 - Rigid and electrically insulating
- Conductive layer
 - ♦ ~10¹³ 10¹⁴ Ohms/Sq
 - Conformal & uniform up to 200 : 1
 - Thickness and Resistivity
 - Low field effects = Low TCR
- Emissive layer
 - Conformal & uniform
 - High secondary yield
 - Contaminants can effect yield
- MCP Device
 - High Gain
 - Resistance stability and matching
 - Stable gain following "scrub"
 - Low outgassing

Process: Conductive film

6

Process: Conductive film - TCR

Thermal coefficient of resistance on par ($B\tau < 0.01$) with current state-of-the-art for two Arradiance conductive films

Process: Secondary electron yield & device gain

Results - Incom 66:1, 20um, 60% OAR March 2010

© 2010 Arradiance[®] Corporation. All rights reserved.

9

Improved Lifetime of Thin Film MCP over Conventional

© 2010 Arradiance[®] Corporation. All rights reserved.

Extracted Dose (C) with 30pA Input

- Arradiance and the Microchannel Plate Amplifier (MCP)
- Motivation I & II
- Theory behind proposed device
- ALD/Film Requirements for Plastic MCP
- SnO₂ ALD Results
- Plastic MCP Beam line Results
 - Efficiency
 - Timing
- From the lab to the field

Motivation in Two Parts

- Scientific Curiosity
 - All microchannel plate amplifiers on the market are made from a glass substrate
 - Can Arradiance make an MCP out of a seemingly more challenging material like plastic?
 - Is there a way to make our high temperature MCP films compatible with plastic?
 - What could a functioning plastic MCP be used for?
 - Large area robust MCPs?
 - MCP-PMTs?
 - Detectors?
- Revenue Generating Applications
 - Detection of Special Nuclear Materials
 - Fast neutron counting/spectroscopy

Plastic MCP Applications

COS detector Hubble telescope

Plastic MCPs are robust and can be potentially be made in large areas for less cost

Market (now): \$100k/year

Large Area(>4") MCP-PMT (Future) Homeland security X-Ray detection: \$100M/year Medical Imaging: \$200M/year

Scientific (DUSEL et al): \$20-50M/year.

*BURLE TECHNOLOGIES, INC. http://www.burle.com/mcp_pmts.htm ‡ Philips Healthcare

Neutron-proton interaction yields detection capabilities

Potential replacement candidate for He-3 detectors Market: >\$1B/year

© 2010 Arradiance[®] Corporation. All rights reserved.

SNM detection technology overview

- Hydrogen-rich PMMA microchannel structure
- Graded Temperature ALD deposition
 - Active films deposition at 140C
- Neutron-proton recoil reaction within plastic at better than 1% efficiency
- Proton initiated secondary electron cascade
- Output pulse 10³ 10⁶ electrons
- Standard readout electronics
- Technology scalable to large format

Secondary Electrons

- Arradiance and the Microchannel Plate Amplifier (MCP)
- Motivation I & II for a plastic MCP
- Theory behind proposed device
- ALD/Film Requirements for Plastic MCP
- SnO₂ ALD Results
- Plastic MCP Beam line Results
 - Efficiency
 - Timing
- From the lab to the field

Some polymer candidates and a precursor candidate

Material	Tg	MP	СТЕ	Water Absorption	H Content (mol H/cm ³)	Is Substrate Manufacturable?
Radel-R5000 (a polyphenylsulfone)	220°C	360°C	56 µm/m-°C	0.4%	0.018	No
PMMA	105ºC	160°C	75 µm/m-°C	0.3%	<u>0.094</u>	Yes
HDP Polyethylene	-78°C	130ºC	25 µm/m-°C	0.05%	0.073	Yes
Polypropylene	-10°C	165°C	90 µm/m-°C	0.01%	<u>0.128</u>	Work in progress

- SnO₂ as conductive layer, Al₂O₃ as emission layer
- Tin (II) cyclic stannylene Gordon group Harvard
 - ♦ 30 Torr at 60°C
 - Reacts readily with hydrogen peroxide
 - ♦ ALD window 50-150°C
 - Conductive
 - Compatible with TMA

- Arradiance and the Microchannel Plate Amplifier (MCP)
- Motivation I & II
- Theory behind proposed device
- ALD/Film Requirements for Plastic MCP
- SnO₂ ALD Results
- Plastic MCP Beam line Results
 - Efficiency
 - Timing
- From the lab to the field

SnO₂ ALD

For further discussion of ALD characteristics of this precursor system see talks given by Roy Gordon ALD 2010 and Adam Hock ALD 2010

Properties vs Aspect Ratio

- Nanolaminate structure of SnO_2 and Al_2O_3
- Deposition temp 85°C

- Gradient of film thickness for current process
- Likely resistivity gradient as well
- Goal: flatten this curve, then create MCP devices

Plastic substrate MCP (alternative material)

- Reasonable gain for electron amplification, limited by L: D
- Uniform response
- Stable operation
- ALD at higher temperatures (limits plastic choices)

- Arradiance and the Microchannel Plate Amplifier (MCP)
- Motivation I & II
- Theory behind proposed device
- ALD/Film Requirements for Plastic MCP
- SnO₂ ALD Results
- Plastic MCP Beam line Results
 - Efficiency
 - Timing
- From the lab to the field

Detector Hardware Experimental Setup

- 2 & 5 mm polymer MCP,
 ~50 μm pores, 20 μm walls, 5° bias angle
- Installed above a chevron stack of 50:1 L/D MCPs
- Phosphor screen readout
- Canberra preamp and postamplifier

Neutron detection simulation

© 2010 Arradiance[®] Corporation. All rights reserved.

 $P_1 \times P_2 \times P_3 = -1\%$ for 2MeV neutrons with 20µm pore walls

Efficiency Results: UNH Beam Line

Isotope sources:

Placed 6" from detector Stilbene scintillator with a single channel PMT (UNH) for calibration Cf-252, Am-241/Be (n, γ) Cs-137, Co-60, Am-241 (γ) Gamma only s

theoretical (0.8%) Low dark counts (dark count ~0.3 c/cm²/s)

© 2010 Arradiance[®] Corporation. All rights reserved.

Gamma only source Face-on Edge-on γ -energy 0.15% 0.33% 0.122 MeV 0.6% 1.5% 0.661 MeV 1.3% 2.87% ~1.2 MeV 0.035 QE, face-on 0.03 ▲ QE, edge-on 0.025 0.02 B 0.015

0.8

1.2

1.4

0.01

0.005

0

0

0.2

0.4

0.6

Gamma energy (MeV)

- Arradiance and the Microchannel Plate Amplifier (MCP)
- Motivation I & II
- Theory behind proposed device
- ALD/Film Requirements for Plastic MCP
- SnO₂ ALD Results
- Plastic MCP Beam line Results
 - Efficiency
 - Timing
- From the lab to the field

Timing and Coincidence

- **Experiment Summary**
 - Using 2 detectors offset and some distance apart
 - Measure events in Arradiance and commercial detectors
 - Gamma or neutron signal detected by Arradiancestarts acquisition window and timer for scintillator
 - Time-of-flight is calculated for each event
 - Statistics collected on each TOF and analyzed

Coincidence measurements for gamma (35 cm distance)

Liquid scintillator detector (BC519) (stop signal at TAC)

Plastic MCP detector (start signal at TAC)

Coincidence gamma rejection plus timing through TOF

Gamma travel at speed of light - detection in two detectors should happen within ~1 ns

Temporal Resolution

Nanosecond resolution = differentiation between incoming gamma and fast neutron radiation

- Arradiance and the Microchannel Plate Amplifier (MCP)
- Motivation I & II
- Theory behind proposed device
- ALD/Film Requirements for Plastic MCP
- SnO₂ ALD Results
- Plastic MCP Beam line Results
 - Efficiency
 - Timing
- From the lab to the field

Creating a usable detector that can compete

Package of Multiple 50mm³ Detection Cubes

- Coincidence techniques can differentiate Gammas and Neutrons
- Combining coincidence with the high efficiency cube yields a state-of-the-art detector
 - Provides directionality
 - Provides discrimination between neutrons and gammas
 - Is sensitive to a large energy range of neutrons and less sensitive to low energy background gammas (not shown)
- Compares favorably with liquid scintillator technology

3 x 3 x 3 cube array in an aluminum enclosure Directionality of source in all spatial dimensions

Acknowledgements

- Dr. James M. Ryan, Professor of Physics, University of New Hampshire
- Mr. Jason S. Legere, Research Project Engineer III
 Space Science Center, University of New Hampshire
- Dr. Richard Lanza, Senior Research Scientist, MIT Dept. of Nuclear Science and Engineering
- Dr. Gordon Kohse, Ph.D; Principal Research Engineer, MIT Nuclear Reactor Laboratory
- The rest of the Arradiance Team
- DOE LAPPD Collaboration
- NASA SBIR NNX10CD59P

Background

Arradiance Inc. 142 North Road, Suite F-150 Sudbury, MA 01776 (800) 659-2970 Tel and Fax www.arradiance.com

© 2010 Arradiance[®] Corporation. All rights reserved.

Neutron detection simulation: proton recoil - P1

50 µm circular pores, 20 µm walls, 1.19 g/cm³

D-T Source (Thermo 320) **Experimental Setup**

1.0E+08 n/s		
14 MeV		
1,200 hours @ 1x10 ⁸ n/s		
250 Hz to 20 kHz, continuous		
5% to 100%		
5 µsec		
Less than 1.5 µsec		
Less than 1.5 µsec		
95 kV		
60 µamps		

© 2010 Arradiance® Corporation. All rights reserved.

Filters: Lead (2"), polyethylene (1", 2"), borated plastic (1")

Lead shielding around the detector

5 mm PMMA MCP, ~50 µm pores, 20 µm walls, 5° bias angle installed above a chevron stack of 50:1 L/D MCPs

