







# Physics with and Physics of Atomic Layer Deposited Nanofilms

A. Brandt, D. Gorelikov, A. Lehmann, N. Sullivan\*

\* Arradiance LLC. 142 North Road, Suite F-150 Sudbury, MA 01776 (800) 659-2970 Tel and Fax www.arradiance.com

© 2004-2017 Arradiance<sup>®</sup> LLC. All rights reserved.



# **Outline** -

- Background
  - Photomultiplier (PMT) Photo Detectors (c1930)
  - Microchannel Plate Photomultiplier (MCP-PMT)
  - Microchannel Plate (MCP) manufacturing (c1960)
- The MCP-PMT in HEP
- Why does the MCP-PMT fail?
- Failure mitigation strategies
- Atomic Layer Deposited (c1970) nanofilm technology for MCPs
- The role of emissive layer charging
- Analytical results
- MCP-PMT lifetime test results
- What does the ALD nanofilm do?
- Conclusions and future work



# PMT principles (1937)

- Capable of single photon detection. ŧ
- Quantum Efficiency (QE) of 20-50% ŧ
- Low noise amplification of electrons ŧ
- Robust, long life ۲
- **BUT:** €
  - Insufficient spatial & temporal resolution (>1ns)







# MCP (1960s) and MCP-PMT (2000)



# MCP Manufacture: Composition determines manufacturing AND structure AND function

|                                      | Wt %   |  |  |  |  |
|--------------------------------------|--------|--|--|--|--|
| Material 🕞                           | 8161 🗔 |  |  |  |  |
| PbO                                  | 50.5   |  |  |  |  |
| SiO <sub>2</sub>                     | 38     |  |  |  |  |
| K₂O                                  | 5.44   |  |  |  |  |
| Rb <sub>2</sub> O                    | 3.7    |  |  |  |  |
| BaO                                  | 2.05   |  |  |  |  |
| Na <sub>2</sub> O                    | 0.34   |  |  |  |  |
| Cs <sub>2</sub> O                    | 0.29   |  |  |  |  |
| Al <sub>2</sub> O <sub>3</sub>       | 0.24   |  |  |  |  |
| Bi <sub>2</sub> O <sub>3</sub>       | 0.04   |  |  |  |  |
| Fe <sub>2</sub> O <sub>3</sub>       | 0.02   |  |  |  |  |
| B <sub>2</sub> O <sub>3</sub>        | 0      |  |  |  |  |
| MgO                                  | 0      |  |  |  |  |
| CaO                                  | 0      |  |  |  |  |
| As <sub>2</sub> O <sub>3</sub>       | 0      |  |  |  |  |
| <b>Sb<sub>2</sub>O<sub>3</sub></b> 0 |        |  |  |  |  |



#### **Substrate Fabrication**

1" Etch-able Core Lead Glass Rod

**Draw Tower** 

Stacked Draw Tower Repeated

Boule 5-100mm Dia

Diced 0.2-0.3 mm thick

Etched Producing >5M 2-10 um pores

#### Substrate Functionalize



H<sub>2</sub> Firing conduction & emission layer produced simultaneously





# **Applications in Particle Physics**

- Latest generation particle physics experiments require
  - Efficient single photon detection in high magnetic fields (>1 Tesla)
  - Capability of dealing with very high photon rates (MHz/cm<sup>2</sup>)
  - Picosecond time resolution and ~mm position resolution
  - Compact form factor
- MCP-PMT ideal sensor for use in particle identification
  - Cherenkov detectors (RICH, DIRC)
  - Time-of-Flight detectors (TOF)
- Examples of physics goals addressed
  - Understanding dynamics of heavy quarks (b-physics in Belle & LHCb)
  - Search for new states of matter (hydrid & glueball resonances in PANDA)
  - Spin structure of the nucleon (addressed with planned electron-ion-collider)



# **PANDA** Detector at FAIR





# MCP-PMTs for PANDA DIRCs

- MCP-PMTs are the only suitable sensors for PANDA
- Compact and available as multi-anode devices
- ♦ Single photon detection in B-fields of 1 2 Tesla
- Time resolution <50 ps</li>
- Low dark count rates
- Barrel DIRC Lifetime
  - Photon rate: ~200 kHz/cm<sup>2</sup>
  - 10yr anode: 5 C/cm<sup>2</sup>
  - Pixel size: ~ 6 x 6 mm<sup>2</sup>
- Endcap DIRC Lifetime
  - ♦ Photon rate: ~1 MHz/cm<sup>2</sup>
  - 10yr anode: >5 C/cm<sup>2</sup>
  - Pixel size: ~ 0.5 x 16 mm<sup>2</sup>



Lifetime status 2011 – < 200mC/cm<sup>2</sup> Barrel DIRC: 3-6 months Endcap DIRC: < 3 months



# Why do MCP-PMTs fail?

- Positive ions desorb during operation<sup>1</sup>
  - Alkali from bulk migrates to the pore surface<sup>1,2</sup>
  - ♦ Residual gases (H, H<sub>2</sub>O, CO, CO<sub>2</sub>) from MCP fabrication process
- MCP permanent gain degradation due to desorption of alkalis
- Photocathode Cs:O layer sensitive to damage
  - QE drops below useful value (~50% of original)





Fig. 2. AES sputter depth profiles of the important elements in the active surface of the channel before ageing of the MCP. The measured peak-to-peak intensity is normalized to the corresponding pure elemental target value which is set at 100.



Fig. 3. As fig. 2, but now after ageing of the MCP.

| <br> |
|------|
|      |
|      |
|      |

#### What has been done?

- Bake 350°C for > 8hrs
- Electron scrub of MCP
  - ♦ < 1C/cm<sup>2</sup> stabilize gain
- Gen III Nightvision
  - ♦ Al<sub>2</sub>O<sub>3</sub> ion barrier
  - "Long Life" Glass
  - Electronic gating
  - Bulk conductive glass
- High Energy Physics
  - ♦ Al<sub>2</sub>O<sub>3</sub> ion barrier
  - Package re-design
  - PC robustness
  - Grid field filter
- Can ALD help? Yes!
  - ♦ HAR 60:1
  - High surface areas (m<sup>2</sup>)

© 2004-2017 Arradiance<sup>®</sup> LLC. All rights reserved.

|   |                                | Wt %   |         |
|---|--------------------------------|--------|---------|
|   | Material 🕞                     | 8161 💷 | L3 NG 🖵 |
|   | PbO                            | 50.5   | 26.6    |
|   | SiO <sub>2</sub>               | 38     | 37      |
| < | K₂O                            | 5.44   | 0       |
|   | Rb₂O                           | 3.7    | 0.85    |
|   | BaO                            | 2.05   | 19.7    |
|   | Na <sub>2</sub> O              | 0.34   | 0       |
|   | Cs <sub>2</sub> O              | 0.29   | 4.12    |
|   | Al <sub>2</sub> O <sub>3</sub> | 0.24   | 1.35    |
|   | Bi <sub>2</sub> O <sub>3</sub> | 0.04   | 2.48    |
|   | Fe <sub>2</sub> O <sub>3</sub> | 0.02   | 0       |
|   | B <sub>2</sub> O <sub>3</sub>  | 0      | 2.8     |
|   | MgO                            | 0      | 0.85    |
|   | CaO                            | 0      | 2.25    |
|   | As <sub>2</sub> O <sub>3</sub> | 0      | 0.65    |
|   | Sb <sub>2</sub> O <sub>3</sub> | 0      | 0.28    |

#### Reliability Test Data (Gain)



J. P. Estrera etal, "Long Lifetime Generation IV Image Intensifiers with Unfilmed Microchannel Plate," Proceedings of SPIE Vol. 4128 (2000)

US Pat 6271511

# Experimental: MCP ALD nanofilm technology on 4 substrates (different compositions and vendors)

- Al<sub>2</sub>O<sub>3</sub> Emissive on fired glass MCP substrates (Samples A-D)
  - ♦ TMA, H<sub>2</sub>O, 150C, 38Å
  - Gain performance correlates with fired MCP performance
- Charging behavior insulator
  - Charging permanent gain reduction in vacuum – recovers only with forced dissipation (e.g. exposure to atmosphere)
  - Charging observed as a function of film thickness
  - Charging observed as a function of glass composition



Channeltron electron multiplier handbook (Burle)



#### **Experimental: Test sample charging results**



12 © 2004-2017 Arradiance<sup>®</sup> LLC. All rights reserved.



## Experimental: Test Sample Charging Results – Sample A





## Experimental: Test Sample Charging Results – Sample B





# Experimental: Test Sample Charging Results – Sample C





# Experimental: Test Sample Charging Results – Sample D



Bias(V)



## **Experimental: FESAM Analytical methodology**



Elemental composition of MCP glass<sup>a</sup>.

| Z                                | Element | Weight percent |
|----------------------------------|---------|----------------|
| 82                               | Pb      | 47.8           |
| 8                                | 0       | 25.8           |
| 14                               | Si      | 18.2           |
| 19                               | K       | 4.2            |
| 37                               | Rb      | 1.8            |
| 56                               | Ba      | 1.3            |
| 33                               | As      | 0.4            |
| 55                               | Cs      | 0.2            |
| 11                               | Na      | 0.1            |
| <sup>a</sup> Density - 4.0 g./cn | n³.     |                |

- Available literature analyses performed on processed, flat, Pb-glass test coupons
- This study on ALD nanofilmed and tested MCP device pore.
- MCP critical dimensions
  - Pore diameter (d) =  $10\mu m$
  - Pore pitch =  $12\mu m$
  - Pore Aspect Ratio = 60:1
  - ♦ NiCr Electrode 2d into pore
  - PHI 670 Auger Nanoprobe
    - Multipak and CASAXPS software
    - ♦ Conditions 3kV, 10nA tilt ~30°
- Ar+ ion gun sputter at 4kV and a raster area of 6x6mm.



### **Experimental: FESAM Results**



- Data from Sample **A** 
  - Survey area within MCP pore indicated by rectangular box
  - ♦ Profile Data 12s (~24 Å/min)
  - Information depth few nanometers at 3kV





# Summary Table: % Potassium vs Charging

| SN              | Α   | В   | С   | D   |
|-----------------|-----|-----|-----|-----|
| Gain multiplier | 10  | 0.2 | 5   | 1.5 |
| Potassium %     | 4.5 | 0   | 4.1 | 0*  |

© 2004-2017 Arradiance<sup>®</sup> LLC. All rights reserved.

# Experimental: Lifetime of MCP-PMTs (06/2017)



- No countermeasures: unusable after <200 mC/cm2</p>
- Modest lifetime improvements with film and new PC
- "Quantum leap" in lifetime (x70) with ALD:

best performing device at 14 C/cm<sup>2</sup> – No QE Loss!



# Discussion: 38Å of $Al_2O_3$ = No photocathode degradation! SPECIAL K

- MCP-PMT test results
  - ♦ Sample **D** formulation >10C/cm<sup>2</sup>
  - ♦ Sample C up to 20C/cm<sup>2</sup> in other testing<sup>1</sup>
- Literature findings:
  - ♦ Monolayer of K on pore surface<sup>2</sup>
  - ♦ ALD of KCl in MCP devices<sup>4</sup>
  - ♦ ALD of potassium aluminate<sup>3</sup>
- Characterization & Test results
  - Substrate (B) cannot be optimized by Al<sub>2</sub>O<sub>3</sub> layer properties alone
  - Al<sub>2</sub>O<sub>3</sub> Conductivity improved with presence of K
  - Final gain is correlated to initial fired substrate gain

1 https://indico.cern.ch/event/393078/contributions/2195231/attachments/1332045/2002282/RICH2016 matsuoka.pdf

2Then, A.M., Pantano, C.G., "Formation and behavior of surface layers on electron emission glasses", J. of Non-Cryst. Solids Vol. 120(1-3), 178-187(1990) 3 E. Østreng et al, "Atomic layer deposition of sodium and potassium oxides: evaluation of precursors and deposition of thin films," Dalton Trans., 2014, 43 4 Zhang et al, "**Potassium chloride nanowire formation inside a microchannel glass array."**. Appl. Phys. Lett. 86, 263110 2005





### Summary and Future Work

# Summary

- FESAM results, in pore, demonstrate viability of method and correlate well with literature from flat test samples
- Presence of Alkali, specifically K, in Al<sub>2</sub>O<sub>3</sub> film correlates with best operational MCP-PMT performance
- TMA +  $H_2O$  reacts with K
  - To lock down K & produce conducting "aluminate"
- Resistive & Emissive ALD layers best lifetime 14 C/cm<sup>2</sup> (24yrs Barrel DIRC)
  - remove other residual species (H, H<sub>2</sub>O, CO, CO<sub>2</sub>) due to the eliminating of the firing step and the thicker encapsulation
- Next Steps Still many Questions...
  - Perform analytical testing "aluminate" composition
    - SEM evidence of additional "reactions" on surface
    - Role of KOH in sustaining the reaction
  - Study aluminate formation through deposition temperature
  - Investigate methods to optimize "long Life" glasses



# Acknowledgements – Thank You for Your Attention!



- Jeff DeFazio
  - Photonis Inc.
- Andrey Elagin
  - University of Chicago HEP
- Darlene Reid
  - Analytical Answers



