Supporting Information for Surface Functionalized Atomic Layer Deposition of Bismuth Vanadate for Phase Pure Scheelite

Benjamin Lamm, Amrita Sarkar, and Morgan Stefik* Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208. *morgan@stefikgroup.com

Estimation of Host-Guest Architecture Needed for Efficient Light Harvesting

Host-guest architectures allow the decoupling of optical absorption from carrier transport. Here we consider the characteristics needed for a host-guest architecture based upon 30 nm SF-ALD BiVO₄ films. Within the 2.4 eV bandgap of BiVO₄,¹⁻³ the AM 1.5 spectrum has the most photon flux near the band-edge at 510 nm. Considering a target of 90% light harvesting efficiency at the 510 nm band edge, the corresponding optical thickness may be calculated using equation S1:

$$A = \alpha l \tag{S1}$$

where A, α , and *I* are the absorbance, attenuation coefficient, and optical thickness of the film. The attenuation of a 30 nm film may thus be used to calculate the optical thickness needed for 90% light harvesting via the attenuation coefficient. Here the absorbance was calculated from the measured absorptance value using equation S2:

$$A = -\log^{[10]}(1 - \frac{A_{\%}}{100})$$
(S2)

where $A_{\%}$ is the absorptance as a percentage. The attenuation coefficient of the 30 nm MeOH-SF-ALD film was thus calculated to be 0.001433 nm⁻¹(at λ =510 nm). This attenuation coefficient was thus used to calculate that 90% absorptance would occur with an optical thickness of 697 nm. This value provides considerable insight into the design of host-guest architectures with efficient light harvesting. For example, assuming all layers are normal to the incident light, this optical thickness corresponds to a roughness factor of (697 nm)/(30 nm)=23.2. In other words, 23.2 such 30 nm layers would be needed to reach the described light harvesting target.

Figure S1. The MeOH pulse length was optimized to saturate the inhibition of V_2O_5 growth using a pulse sequence of [MeOH-VTIP-W]_x.

Figure S2. GIWAXS of calcined MeOH-BVO films of 7.5 (a) and 15-75 nm (b) thickness. Sample descriptions in Table 4 of the text.

Figure S3. GI-WAXS of bare FTO and FTO/BiVO₄ (30 nm, calcined MeOH-BVO where x=4,000 cycles).

Table S1. Comparison of mean front-side photocurrent at 0.6 V vs RHE (J_{J-V}) to photocurrent calculated from IPCE (J_{IPCE}) . Data is from calcined SF-BVO films. Samples are the same as those described in Table 4 of the text. J_{IPCE} was determined by multiplying IPCE (%) by the AM 1.5 spectrum (mA/cm²/nm) before integrating over wavelength (nm).

Sample Name	J _{J-V} (mA/cm ²)	J _{IPCE} (mA/cm ²)	Percent Difference
7.5nm-1k	0.010±0.002	0.003±0.001	63.9
15nm-2k	0.075±0.005	0.026±0.005	64.6
22.5nm-3k	0.11±0.01	0.043±0.007	62.4
30nm-4k	0.35±0.01	0.20±0.02	44.4
45nm-6k	0.31±0.02	0.18±0.03	42.2
60nm-8k	0.46±0.02	0.33±0.03	29.4
75nm-10k	0.57±0.03	0.66±0.03	15.2

Figure S4. The photocurrent performance of bismuth vanadate films prepared by conventional ALD and SF-ALD were compared under simulated AM 1.5 illumination. The conventional ALD procedure is identical to the SF-ALD procedure sans alcohol surface functionalization. The conventional ALD samples were 55.6 nm thick and were calcined at 450 °C for 1 hr and etched in 1 M NaOH to remove excess V₂O₅. The comparable SF-ALD samples were denoted at **60nm-8k** in the text.

Figure S5. Chronoamperometry of SF-ALD film 30nm-4k over 17hrs of continuous simulated AM 1.5 illumination at an applied potential of 0.6 V vs RHE. The electrolyte was 1.0 M potassium borate with a pH of 9.36 with 0.2 M Na₂SO₃ as hole scavenger.

Figure S6. XPS of calcined and PEC activated 30nm-4k films, showing regions for (a) Bi 4f and (b) V 2p.

Figure S7. GI-WAXS measurements on calcined 30 nm MeOH-BVO films without and with the photoelectrochemical activation. **Control** and **Activated** samples are the same as those described in Table 6 of the main text.

Figure S8. Comparison of surface structure (a) before and (b) after photoelectrochemical activation. Images were acquired on calcined 30 nm MeOH-BVO films deposited on FTO.

Step	Label	Device Index	Device Name	Action	Value	Branch
1		28	Pump		0	
2		9	EXPO_Heater	Set_to_On	0	
3		8	MFC_Flow	Set_to_Value	200	
4		1	VTIP Heater	Set_to_Value	45	
5		2	BiPh3 Heater	Set_to_Value	130	
6		4	Metal Precursor Manifold	Set_to_Value	130	
7		5	Oxidant Manifold	Set_to_Value	130	
8		7	Chamber_Door_Heat	Set_to_Value	130	
9		6	Chamber_Heat	Set_to_Value	130	
10		6	Chamber_Heat	Wait_Until_Set_Point_+/-	1	
11		22	Delay_(Sec.)		7200	
12	DepoLoop	22	Delay_(Sec.)		0.1	
13	VLoop	8	MFC_Flow	Set_to_Value	40	
14		8	MFC_Flow	Wait_Until_<	45	
15		10	EXPO_Actuator	Set_to_Closed	0	
16		22	Delay_(Sec.)		0.2	
17	MeOH	18	ALD_7_Actuator	Pulse_(mSec.)	25	
18		22	Delay_(Sec.)		1	
19		10	EXPO_Actuator	Set_to_Open	0	
20		8	MFC_Flow	Set_to_Value	200	
21		22	Delay_(Sec.)		10	
22		8	MFC_Flow	Set_to_Value	5	
23		8	MFC_Flow	Wait_Until_<	6	
24		22	Delay_(Sec.)		7	
25		10	EXPO_Actuator	Set_to_Closed	0	
26		22	Delay_(Sec.)		0.2	
27	VTIP	13	ALD_2_Actuator	Pulse_(mSec.)	2000	
28		22	Delay_(Sec.)		1	
29		10	EXPO_Actuator	Set_to_Open	0	
30		8	MFC_Flow	Set_to_Value	200	
31		22	Delay_(Sec.)		10	
32		8	MFC_Flow	Set_to_Value	40	
33		8	MFC_Flow	Wait_Until_<	45	
34		10	EXPO_Actuator	Set_to_Closed	0	
35		22	Delay_(Sec.)		0.2	
36	water	16	ALD_5_Actuator	Pulse_(mSec.)	25	
37		22	Delay_(Sec.)		1	
38		10	EXPO_Actuator	Set_to_Open	0	
39		8	MFC_Flow	Set_to_Value	200	
40		22	Delay_(Sec.)		10	
41		24	Loop n Times	Number	1	VLoop

Table S2. All	parameters	used in the	e MeOH-SF-AL	Odeposition.
---------------	------------	-------------	--------------	--------------

42	BiLoop	8	MFC_Flow	Set_to_Value	40	
43		8	MFC_Flow	Wait_Until_<	45	
44		11	N2_Inject		0	
45		10	EXPO_Actuator	Set_to_Closed	0	
46		22	Delay_(Sec.)		0.2	
47	BiPH3	14	ALD_3_Actuator	Pulse_(mSec.)	2000	
48		22	Delay_(Sec.)		1	
49		10	EXPO_Actuator	Set_to_Open	0	
50		8	MFC_Flow	Set_to_Value	200	
51		22	Delay_(Sec.)		10	
52		8	MFC_Flow	Set_to_Value	40	
53		8	MFC_Flow	Wait_Until_<	45	
54		10	EXPO_Actuator	Set_to_Closed	0	
55		22	Delay_(Sec.)		0.2	
56	water	16	ALD_5_Actuator	Pulse_(mSec.)	25	
57		22	Delay_(Sec.)		1	
58		10	EXPO_Actuator	Set_to_Open	0	
59		8	MFC_Flow	Set_to_Value	200	
60		22	Delay_(Sec.)		10	
61		24	Loop_n_Times	Number	1	BiLoop
62		24	Loop_n_Times	Number	3000	DepoLoop
63		22	Delay_(Sec.)		3600	
64		8	MFC_Flow	Set_to_Value	5	

References

- (1) Kudo, A.; Omori, K.; Kato, H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO 4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. *J. Am. Chem. Soc.* **1999**, *121*, 11459–11467.
- (2) Kim, T. W.; Choi, K.-S. Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. *Science (80-.).* **2014**, *343* (6174), 990–994.
- (3) Park, Y.; McDonald, K. J.; Choi, K.-S. Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation. *Chem. Soc. Rev.* **2013**, *42* (6), 2321–2337.