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a b s t r a c t 

In this paper we describe experiments and a continuum phase transition model for the compression of 

carbon nanotube (CNT) forests. Our model is inspired by the observation of one or more moving inter- 

faces across which densified and rarefied phases of the CNT forests co-exist. We use a quasi-static version 

of the Abeyaratne-Knowles theory of phase transitions for continua with a stick-slip type kinetic law and 

a nucleation criterion based on the critical stress for buckling of CNT forests to describe the formation 

and motion of these interfaces in uniaxial compression experiments. We investigate micropillars made 

from bare CNTs, as well as those coated with different thicknesses of alumina using atomic layer depo- 

sition (ALD). The coating thickness affects the moduli of individual CNTs as well as the adhesion energy 

per contact between CNTs. In order to test the applicability of our model to more complex stress states, 

we carry out nanoindentation experiments on the CNT pillars and interpret the load-indentation data by 

incorporating a constitutive law allowing for phase transitions into solutions for the indentation of a lin- 

early elastic half-space. Even though the state of stress in a nanoindentation experiment is more complex 

than that in a uniaxial compression test, we find that the parameters extracted from the nanoindentation 

experiments are close to those from uniaxial compression. Our models could therefore aid the design of 

CNT forests to have engineered mechanical properties, and guide further understanding of their behavior 

under large deformations. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Carbon nanotubes (CNTs) are well known to have high elas-

tic modulus Treacy et al. (1996) and strength Peng et al. (2008) ,

along with excellent electrical and thermal conductivity Li et al.

(2005) ; Yu et al. (2005) . When synthesized at high density on a

substrate, it is typical for the CNTs to self-organize such that they

are nominally vertically aligned Bedewy et al. (2012) , sometimes

called carpets or forests, wherein the CNTs are wavy yet have a

general orientation perpendicular to the substrate (see Fig. 1 ) Fan

et al. (1999) ; Hata et al. (2004) . This efficient means of organiz-

ing the CNTs into anisotropic films having thickness ranging from

the micrometer to multi-millimeter scale, has spurred wide studies

of their potential use as, for example, thermal and electrical inter-

faces Taphouse et al. (2014) ; Tawfick et al. (2009) , composite ma-
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erials Coleman et al. (2006) ; Meaud et al. (2014) ; BrielandShoultz

t al. (2014) , and filtration membranes Halonen et al. (2010) . In

ll cases, the properties of the CNT forest are intimately related to

he dimensions, density, and orientation of the CNTs, which may

lso vary spatially through the forest Bedewy et al. (2011) ; Park

t al. (2013a ). CNTs can be reasonably described as slender beams,

herefore it is well accepted that the CNT forest can be considered

s a fiber network or foam Cao et al. (2005) ; Zbib et al. (2008) ;

utchens et al. (2010) ; 2011 ). However, the complex mechanical

ehavior observed upon compression of CNT forests, and its gen-

ral relation to the attributes of CNT diameter, density, and orien-

ation, is not yet well understood. 

Although ideas from the mechanics of fiber networks have not

et been applied to CNT forests, the compressive behavior of fiber

etworks has been studied in other contexts. For example, the me-

hanics of yarns, such as wool, was examined in the textile liter-

ture many decades ago and it was recognized that compression

f this type of fibrous masses was dominated by the bending and

http://dx.doi.org/10.1016/j.ijsolstr.2017.06.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
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Fig. 1. (a) SEM image of an array of CNT pillars used for mechanical characteri- 

zation; (b) SEM image of individual pillar, close-up of CNT forests as viewed from 

sidewall, and top/side view schematic of CNT forests without ALD coating; (c) cor- 

responding images after ALD coating with Al 2 O 3 . 

b  

a  

t  

b  

i  

a  

b  

i  

f  

e  

b  

s  

(

 

f  

t  

c  

d  

A  

a  

a  

t  

e  

p  

r  

t  

C  

h  

p  

r  

b  

i  

l  

r  

e  

s  

c  

e  

t  

K  

p  

c  

s  

a  

r  

m  

e  

t  

t  

e  

T  

s  

l  

e  

f  

d  

i  

f  

t  

d  

H  

e  

c  

e  

c  

r  

i  

(  

i  

d  

m  

r  

W  

e  

p  

l  
uckling of fibers. Pursuing this idea, Van Wyk (1946) determined

 relation between the Cauchy stress and fiber volume fraction in

he current configuration in terms of the network parameters and

ending modulus of the fibers. Subsequent work applied similar

deas to many other fiber networks, such as, glass wool, paper, etc.,

nd confirmed that Van Wyk’s relation describes the compressive

ehavior quite well Toll (1998) . Recent modifications to the theory

nclude accounting for steric hindrances Komori and Itoh (1994) ,

riction between fibers Barbier et al. (2009) , and fiber crimp Lee

t al. (1992) . A vast literature also exists for the tensile and shear
ehavior of fiber networks that we do not describe here for the

ake of brevity, but is well described in a review article Onck et al.

2005) . 

The compression behavior of fiber networks is similar to that of

oams Onck et al. (2005) . In particular, it has been demonstrated

hat buckling of fibers during compression often happens in a lo-

alized manner so that one or more moving interfaces separate a

ensified region of the network (or foam) from a rarefied region.

 few papers have described the motion of these interfaces using

 theory of phase transitions by recognizing that in both dynamic

nd quasi-static experiments the rarefied and densified regions of

he network (or foam) can coexist over a range of stresses Gong

t al. (2005) ; Kim et al. (2015) ; Lakes et al. (1993) . In this pa-

er we apply a phase transitions based model to the compression

esponse of vertically aligned CNT forests, obtained via quantita-

ive in situ micro-compression experiments. We assume that the

NT forest is an elastic foam with a stored energy function that

as two wells (or minima) – one corresponding to the rarefied

hase in which the CNTs are mostly straight, and the other cor-

esponding to the densified phase in which the CNTs are mostly

uckled with a large number of contacts between them. The ex-

stence of broad convex regions around the minima in the energy

andscape of CNT forests is attributed in Qiu et al. (2011) to the

eversibility of the deformation under moderate strains (as seen in

xperiments Qiu et al. (2011) ; McCarter et al. (2006) as well as

imulations Radhakrishnan et al. (2013) ). Such reversibility is also

haracteristic of phase changing materials whose Helmholtz free

nergy function has multiple minima, each of which correspond

o different micro-structure Bhattacharya (2003) ; Abeyaratne and

nowles (2006) . In order to accommodate the deformations im-

osed on the boundary, a phase changing material forms mi-

rostructure in the bulk in which different phases co-exist at the

ame stress Bhattacharya (2003) ; Abeyaratne and Knowles (2006) ;

nalogously, there is a range of stresses at which the densified and

arefied phases of CNT forests can co-exist to accommodate defor-

ations imposed at the boundary. The idea of a multi-well en-

rgy landscape has appeared in a series of papers that describe

he CNT forests as a one-dimensional mass-spring chain in which

he springs are characterized by a double well potential Fraternali

t al. (2011) ; Blesgen et al. (2012) ; Raney et al. (2013a ); 2013b );

hevamaran et al. (2015) . These models acknowledge the multi-

cale nature of the mechanical response of CNT forests and al-

ow for the possibility that the properties could be graded Blesgen

t al. (2012) , so that the buckling load of the fibers could be a

unction of position. They also predict discrete jumps in the load-

isplacement curves (as the springs jump from one energy min-

mum to another) much like the discrete buckling events of CNT

orests loaded in uniaxial compression. A continuum limit of this

ype of model has also been obtained and used to interpret the

issipation in loading/unloading experiments Raney et al. (2013a ).

owever, these models do not connect the micro-structural param-

ters of the CNT forests (such as, density, CNT diameter) with the

onstitutive parameters entering the model as is done in the lit-

rature on foams. A micro-structural connection based on the me-

hanics of foams has been presented by Hutchens et al. (2012) who

ecognize that CNTs can adhere to each other causing a reduction

n the energy of the forest under compression (see also Zbib et al.

2008) ). Hutchens et al. connect the microscopic sticking behav-

or of CNTs to a visco-plastic hardening rule used in a fully three-

imensional computational framework Hutchens et al. (2011) . A

ore comprehensive nano-scale computational model which rep-

esents CNTs in a forest as elastica finite elements with van der

aals interactions was described by Torabi et al. (2014) and Volkov

t al. (2009) . Torabi et al. (2014) establish relationships between

ost-buckling stress, initial elastic modulus, and buckling wave-

ength on statistical parameters (tortuosity, density and connectiv-
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Fig. 2. (a) Schematic of two experimental configurations (and, thus, stress states) investigated: uniaxial pillar compression (left) and nanoindentation (right). In each case 

an interface, or phase boundary, separates the densified and rarefied phases. The phase boundary is flat in the uniaxial compression experiments and has an axi-symmetric 

shape in the nanoindentation experiments. As the load P increases, the volume of the densified phase increases by the outward motion of the phase boundary (shown by 

arrows). (b) Schematic of in situ SEM mechanical testing configuration used for pillar compression, and (c) low-magnification SEM image of testing apparatus and pillar 

specimens. (d) Illustration of nanoindentation test on a CNT pillar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

b  

t  

l  

c  

a  

d  

e  

d  

i  

a  

t  

c  

t  

(

 

p  

i  

t  

p  

y  

t  

l  

f  

t  

t  

t  

i  

s  
ity) of a CNT forest which a macroscopic constitutive model, ide-

ally, should reproduce. Separately, it has been argued that such a

macroscopic constitutive law for describing coordinated buckling

of CNT forests should be local because constitutive properties ex-

hibit only statistical variations across a CNT forest from top to bot-

tom as demonstrated by uniaxial compression and nanoindenta-

tion experiments of Qiu et al. (2011) . 

Here we use a local continuum phase transition theory to study

the uniaxial compression of CNT forests and include phase bound-

ary kinetics as well as a nucleation criterion to describe features

seen in the stress-strain curves. In contrast to a discrete mass-

spring chain, a continuum phase transition model describes layer

buckling of CNT forests as continuous interface (separating rar-

efied and densified phases) propagation (see cartoon in Fig. 2 a).

We (and others) have shown in recent work that the dynamics of

discrete bi-stable mass-spring chains can be captured by a con-

tinuum phase transition theory if information lost in going from

the discrete to continuum description is distilled into a kinetic re-

lation and nucleation criterion that are supplied as constitutive

information to the continuum theory Zhao and Purohit (2016) ;

Zhao et al. (2015) ; Truskinovsky and Vainchtein (2005) . A con-

tinuum phase transitions model, in contrast to a discrete mass-

spring chain, is needed to model the response of CNT forests un-

der loading configurations that are more complex than uniaxial

compression. Here we demonstrate this idea by using our con-

stitutive model to interpret indentation experiments on the CNT

forests in which the stress and strain fields are inherently three-

dimensional (see Fig. 2 a). Phenomenological constitutive models

that capture the load-indentation depth curves in nanoindentation
xperiments have been implemented recently using finite elements

y Radhakrishnan et al. (2013) , but to the best of our knowledge,

hese models have not been used to explain the collective buck-

ing of CNT forests under uniaxial compression. In contrast, our

ontinuum model can be applied to both uniaxial compression

s well as nanoindentation experiments. It is characterized by a

ouble-well energy landscape, much like the springs of Fraternali

t al. (2011) and Blesgen et al. (2012) , but it incorporates a rate-

ependent kinetic law to describe the motion of phase boundaries

n the spirit of Hutchens et al. (2011) . Hutchens et al. (2011) used

 visco-plastic computational model because the deformation of

he CNT forests in their experiments was not fully recoverable. In

ontrast, the CNT forests in our experiments showed deformations

hat were largely recoverable with hysteresis, similar to Cao et al.

2005) ; Pathak et al. (2012) . 

The paper is organized as follows. In Section 2 we describe the

reparation of the CNT forest samples. In Section 3 we describe the

n situ scanning electron microscopy (SEM) experiments, and how

he data from the compression experiments is interpreted using a

hase transitions model. An insight that is confirmed by our anal-

sis of the experimental data within a phase transitions model is

hat in agreement with the work of Torabi et al. (2014) the buck-

ing wavelength varies inversely as the buckling load of the CNT

orests and may be related to the energy of the interface separating

he rarefied and densified phases. In Section 4 we briefly describe

he nanoindentation experiments on the same samples, and how

he data from these experiments can be interpreted by incorporat-

ng a linearized version of our phase transitions based model into

olutions for indentation of an elastic half-space. The purpose of
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ection 4 is to show that our continuum phase transitions model

rom Section 3 can predict the response of the CNT forests to in-

entation even though the state of stress in indentation is very dif-

erent from that in uniaxial compression. We close with the main

onclusions in Section 5 . 

. Preparation of CNT pillars 

.1. CNT forest growth 

For the growth of vertically aligned CNTs (see Fig. 1 ), an

l 2 O 3 /Fe catalyst layer is first patterned on4 ′′ (100) silicon wafers

oated with 300 nm of thermally grown SiO 2 , by lift-off pro-

essing using photo-lithography followed by ultrasonic agitation in

cetone. The supported catalyst layer, 10 nm of Al 2 O 3 and 1 nm

f Fe, is sequentially deposited by electron beam physical vapor

eposition. The wafer with the deposited catalyst is diced into 1

1 cm pieces, and for each sample one piece is placed in the

uartz tube furnace for the CNT growth. The growth recipe starts

ith flowing 10 0/40 0 s.c.c.m. of He/H 2 while heating the furnace

p to 775 °C over 10 min (ramping step); then the temperature

s held at 775 °C for 10 min with the same gas flow rates (an-

ealing step). Then the gas flow is changed to 10 0/40 0/10 0 s.c.c.m.

f C 2 H 4 /He/H 2 at 775 °C for CNT growth for the selected duration

ased on the typical growth rate of approximately 100 μm/min

growth step). Once the desired growth time has passed, the same

as flow is maintained while the furnace is turned off, allowing

he system to cool. Once the furnace temperature reaches below

00 °C, 1000 s.c.c.m. of He is maintained for 5 min to purge the

uartz tube before the samples are retrieved. 

.2. ALD Al 2 O 3 coating 

For some samples, the as-grown CNT samples are then coated

ith Al 2 O 3 via ALD (Arradiance, GEMStar XT); each cycle deposits

.1-1.3 Å of Al 2 O 3 . Trimethylaluminum, Al 2 (CH 3 ) 6 , and ozone, O 3 ,

ere used as the precursors. The deposition is performed at

75 °C and 1 Torr, and between introduction of each precursor,

he chamber is evacuated to ensure that no residual precursor re-

ained in the chamber. 

. Compression of the CNT forests 

.1. Experiment 

After CNT growth and ALD coating, the CNT forests patterned

s pillar compression specimens are placed in a custom nanome-

hanical testing apparatus for quantitative in situ mechanical test-

ng in a scanning electron microscope (SEM). The testing appara-

us consists of three key components: a 6-DOF closed loop nano-

ositioning stage (SmarAct GmbH), a linear piezoelectric actuator

Physik Instrumente GmbH), and a MEMS-based silicon capacitive

oad cell (FemtoTools AG) as illustrated in Fig. 2 b. The apparatus

as been described in detail previously Magagnosc et al. (2013) ;

hao et al. (2015) . The testing setup is installed in a high resolu-

ion SEM (FEI Quanta) for mechanical testing of the CNT pillars and

imultaneous high resolution observation (see Fig. 2 c). 

Testing was performed according to the following procedure.

he SEM stage was tilted by < 5 ° to provide an unobstructed

iew of the CNT pillar array as depicted in Fig. 2 c. A coarse an-

ular alignment of the load cell indenter to the CNT pillars was

rst performed visually. Fine angular alignment was achieved us-

ng the previously reported contact stiffness method Zhao et al.

2015) on the CNT growth substrate. By maximizing contact stiff-

ess, good alignment of the CNT pillars and load cell was ensured,

ost notably in the y-z plane (out of the imaging plane). The load
ell was then visually aligned in the x, y, and z directions with

 selected pillar for testing. Quasi-displacement controlled uniax-

al compression was performed while recording the actuator dis-

lacement, force, and an imaging sequence at nominal strain rates

etween 0.001 s −1 and 0.1 s −1 . 

The pillars tested here generally showed different moduli and

lateau stresses, yet consistent loading behavior regardless of ALD

oating thickness, as shown in Figs. 3 and 4 . This general behavior

s shown for bare CNTs ( Fig. 3 a), CNTs with 5 ALD cycles ( Fig. 3 b),

nd CNTs with 10 ALD cycles ( Fig. 3 c). During initial loading, a flat

urface between the punch face and the pillar top is created. Sub-

equently, the pillar undergoes elastic loading evident in the ini-

ial linear response of the stress strain curve. At a critical stress

evel, pillar scale buckling occurs, which is reflected in large soft-

ning events in the stress-strain curve. This pillar scale buckling

oves spatially along the pillar axis with nominally constant stress

uring the plateau region until it reaches the densification region.

he stress rapidly rises in the densification region. The three load-

ng regimes are indicated in Fig. 3 c by the highlighted circles.

napshots of the deformation morphology from the three loading

egimes are shown in Fig. 3 d. 

While the stress-strain curves for the various sample conditions

howed self-similar response, images obtained during the com-

ression tests indicate that the ALD coatings substantially altered

he pillar scale deformation behavior. For the bare CNT samples,

illar scale buckling occurred at the top of the pillar and moved

ntirely to the bottom as compression progressed. Buckling ini-

iated at the top likely because the CNTs have more freedom to

end due to frictional interactions with the punch; in contrast, at

he bottom CNTs are constrained by bonding to the substrate. In

uch short CNT micropillars, we also expect that there is a density

ariation through the height, with a lower density at the top Park

t al. (2013b ). However, Qiu et al. (2011) performed localized in-

entation and uniaxial compression experiments recently to show

hat coordinated buckling of CNT forests is most likely the result

f the interplay between the rigid substrate and compliant for-

st and does not require variation in material properties through

he height. Between the first and second buckling (or nucleation)

vents we could discern an interface marked by arrows in Fig. 3 b

nd c. Above this interface the CNT forests were densified, and be-

ow it they were rarefied. The first buckling event remained identi-

al in coated samples. However, for the alumina coated pillars, an-

ther buckled region nucleated at the bottom following quasistatic

ropagation of a portion of the first buckled zone. Notably, this

econd nucleation of pillar scale wrinkling was not clearly distin-

uishable in the stress-strain curve, signifying that the deforma-

ion mechanism during the plateau region remains the same. An

lternative explanation for the second nucleation event is that non-

niformity in the CNT density is augmented by the ALD coating;

ropagation of the first buckling front may thus compete with nu-

leation of the second front. 

We examined the effect of strain rate on the compressive

tress-strain response as shown in Fig. 4 . Here, representative

tress-strain curves for loading rates from 0.1 to 0.001 s −1 are

hown in red blue, and green solid lines, respectively, for bare CNTs

 Fig. 4 a), CNTs with 5 ALD cycles ( Fig. 4 b), and CNTs with 10 ALD

ycles ( Fig. 4 c), all of which show some strain-rate dependence.

owever, the qualitative loading response was found to be self-

imilar regardless of the loading rate. 

Digital image correlation (DIC) Eberl et al. (2006) was applied

o the SEM images captured during the in-situ compression tests

o examine the local displacement and strains. The sample with

0 ALD cycles compressed with strain rate of 0.001 s −1 , was cho-

en for the DIC since this sample showed most reliable tracking

ue to its high contrast features. The SEM images were acquired

t one frame per second and subsequently analyzed using DIC
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Fig. 3. Quantitative in situ uniaxial compressive behavior and SEM images of (a) bare CNTs, (b) CNTs with 5 ALD cycles and (c)CNTs with 10 ALD cycles. An arrow next to 

the SEM images in (b) and (c) shows the position of the phase boundary above which the forest is densified. The dots in each plot are experimental data and the lines 

are from the phase transition model. Blue line corresponds to rarefied phase during loading, upper red line to a mixture of rarefied and densified phases during loading, 

green line to densified phase during unloading, and bottom red line to mixture of rarefied and densified phases during unloading. Note that around a strain of 0.8 there is a 

difference between the loading and unloading curves (for the densified phase) obtained from experiments. (d) SEM snapshots obtained from the highlighted regions of the 

stress-strain curve in (c) showing the elastic, plateau, and densification regimes. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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Fig. 4. Compression stress-strain curves for three different strain rates 0.1 s −1 , 0.01 s −1 , and 0.001 s −1 (red, blue, and green solid line respectively) for (a) Bare CNTs, (b) 

CNTs with 5 ALD cycles, and (c) CNTs with 10 ALD cycles, respectively. Dashed lines are curves predicted by our phase transition model with parameters given in Table 1 . 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. (a) DIC measurement of displacement at each reference position for various global compressive strains from 0.047 to 0.294. The insets show the piecewise constant 

strain and piecewise linear displacement profiles for an ideal sharp interface. The experimental displacement profiles look similar to the lower inset. (b) DIC measurement 

of local strains for various global compressive strains from 0.047 to 0.227 and fitting with Eq. (18) . 
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ith an image subset spacing of 250 nm. Longitudinal displace-

ents of the subsets were computed at nine global strain levels,

s plotted in Fig. 5 a. The longitudinal displacement profiles ex-

ibited approximately the piecewise linear form depicted in the

ower inset of Fig. 5 a, indicating a clear transition zone. These pro-

les also demonstrated a shift along the pillar axis with increasing

lobal strain, suggesting the motion of an interface. The longitudi-

al strain was computed from spatial derivatives of the displace-

ent field ( Fig. 5 b) for five different global compressive strains,

hich indicate an interface about 200 nm wide, which also shifts

ith increasing global strain. Since the width of the interface is

uch smaller than the height of the sample it can be approxi-

ated as a sharp interface, or phase boundary, whose motion is

escribed by a kinetic law. 

.2. CNT forests buckling viewed as a phase transition 

Informed by experimental evidence of a phase transforma-

ion with a moving phase boundary, we use a one-dimensional

uasi-static version of the well-known Abeyaratne–Knolwes the-

ry Abeyaratne and Knowles (2006) for phase transitions in con-

inua to describe CNT pillar compression. The discrete mass-spring

odel of Fraternali et al. (2011) with bi-stable springs can be

hought of as a pre-cursor to our continuum model since it was

hown in Purohit (2001) and Zhao and Purohit (2014) that the

tatic and dynamic response of bi-stable chains is analogous to

hat of one-dimensional phase-transforming continua. In our con-
inuum model the rarefied phase in which the CNTs are mostly

traight is described by the stress-strain ( σ − ε) relation: 

 = �L (σ ) , 0 < σ < σM 

, (1)

here σ M 

is the upper stress limit for the rarefied phase. While

oading in compression, the densified phase nucleates at a stress

LH < σ M 

, and is described by the stress-strain relation : 

 = �H (σ ) , σm 

< σ < ∞ , (2)

here σ m 

is the lower stress limit for the densified phase. Simi-

arly, while unloading in compression, the rarefied phase nucleates

t stress σ HL > σ m 

(with σ HL < σ LH ). Therefore, for σ m 

≤ σ ≤ σ M 

,

here are two possible stable phases corresponding to stress σ . We

efine a transformation strain γ T ( σ ) as: 

T (σ ) = �H (σ ) − �L (σ ) , σm 

≤ σ ≤ σM 

. (3)

e model the compression process of our CNT pillars as an one-

imensional initial-boundary-value problem of a continuum hav-

ng the above stress-strain relation. We assume that the contin-

um extends along the x -direction and is confined to the interval

 < x < L in the reference configuration. The displacement of a

aterial point at reference position x is given by u ( x, t ). The end

t x = 0 is fixed so that u (0 , t) = 0 for all t . At the end x = L we

pply a displacement boundary condition, so that u (L, t) = δ(t) .

e see that when the specimen is being loaded 

˙ δ(t) < 0 and

hen it is being unloaded 

˙ δ(t) > 0 . The equation of motion for

ur one-dimensional continuum in the quasi-static setting is sim-

ly ∂σ/ ∂x = 0 , so that σ ( x, t ) is constant for 0 < x < L at all t . So,
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the state of strain is: ε = �L (σ ) if σ < σ M 

and ε = �H (σ ) if σ >

σ m 

. If the stress σ is such that σ m 

< σ < σ M 

then a mixture of

phases is possible. Consequently, the elongation of the continuum

is given by 

u (L, t) = δ(t) = �H (σ (t )) s (t ) + �L (σ (t))(L − s (t)) , (4)

where s ( t )/ L is the fraction of material in the densified phase (see

Fig. 3 ). Note that if there was a single phase boundary separating

the rarefied and densified phases (as is the case before the sec-

ond nucleation event for all three types of CNT forest) then s ( t )

denotes the position of the phase boundary in the reference con-

figuration. Recall now that δ( t ) is prescribed, but the evolution of

s ( t ) is as yet unknown. For describing the evolution of s ( t ), which

can be thought of as an internal variable, in this continuum theory

we need a kinetic relation Abeyaratne and Knowles (2006) . This

kinetic relation is expressed in terms of the some driving force f

by the relation 

˙ s = �( f (t)) , (5)

where �( f ) is a material property as in Abeyaratne and Knowles

(2006) . Now, we assume f is a unique function of σ , so the kinetic

relation can be expressed as 

˙ s = �̄(σ ) . (6)

Differentiating Eq. (4) and eliminating ˙ s using Eq. (6) we obtain the

following equation relating σ ( t ) and δ( t ): [
p(σ ) − γ ′ 

T (σ ) 
δ

L 

]
˙ σ + γT (σ ) 

˙ δ

L 
= 

γ 2 
T 

L 
�̄(σ ) (7)

where 

p(σ ) = �L (σ )�′ 
H (σ ) − �′ 

L (σ )�H (σ ) . (8)

For given δ( t ) Eq. (7) can be integrated to get σ ( t ). In our experi-

ments ˙ δ is typically a constant value for both loading and unload-

ing. 

3.3. Application to the CNT forests 

We now write specific constitutive relations for the stress–

strain response of the CNT forests given by Eqs. (1–2) , and phase

boundary kinetics in Eq. (6) . We assume that the stress-strain re-

lation is linear in the rarefied phase as: 

σ = Eε, (9)

if ε < ε M 

= σM 

/E, where E is a Young’s modulus. In doing so we

have assumed that the CNT forests behave as a foam for which

the stress-strain response at small strains can be computed in the

terms of the properties of single fibers and the density of the net-

work Cao et al. (2005) ; Zbib et al. (2008) ; Hutchens et al. (2010) ;

Gibson and Ashby (1999) . We point out, however, that density is

not the only parameter that determines the Young’s modulus of a

CNT forest Torabi et al. (2014) ; Volkov et al. (2009) ; tortuosity (av-

erage curvature of the CNTs) and connectivity (average number of

contacts per unit length of CNTs) also play a role, although density

dominates the overall modulus Qiu and Bahr (2013) . In the densi-

fied phase we will start with a non-linear power-law relation given

by Van Wyk (1946) and Toll (1998) as : 

σ = kE ( φn − φn 
0 ) , (10)

where k is a coefficient around unity Mezeix et al. (2009) , and n is

derived to be 3 for three dimensional isotropic random networks

Van Wyk (1946) ; Toll (1998) , and also confirmed by several exper-

iments Mezeix et al. (2009) ; Choong et al. (2013) ; Bouaziz et al.

(2013) ; Masse and Poquillon (2013) ; Kim et al. (2015) . While ver-

tically aligned CNT forests may be better modeled as transversely
sotropic materials, we do not do so here because such a model re-

uires five constitutive parameters which are difficult to meaning-

ully obtain from uniaxial compression experiments. Furthermore,

utchens et al. (2012) have demonstrated that an isotropic mate-

ial model can capture the visco-plastic response quite well. In the

bove, φ0 is the volume fraction of fibers in the network when

= 0 and φ is the current volume fraction of the fibers. They are

elated through the compressive strain ε as 

= 

φ0 

1 − ε 
, (11)

ssuming that the cross-sectional area of our specimen does not

hange significantly (as evident from the images in Fig. 3 ). This

tress-strain relation Eq. (10) does not account for the possibil-

ty that fibers can adhere to one another when brought into con-

act Radhakrishnan et al. (2013) ; Torabi et al. (2014) . In fact, a com-

utational study by Torabi et al. (2014) has revealed that average

umber of contacts per unit CNT length, or connectivity, depends

ot just on the fiber volume fraction, but also on the growth pro-

ess through the seed density (each CNT grows from a seed) and

eakly through the cone angle (the limiting cone around link i

ithin which the next link i + 1 of a growing CNT can lie). Here,

n the interest of analytical tractability, we will account for fiber-

o-fiber adhesion following Toll (1998) who shows that fiber con-

act point density scales with the square of the fiber volume frac-

ion N c ∝ φ2 . Assuming each newly formed contact point results in

 bond which releases free energy U bond , then the bonding energy

er unit volume is E bond = −Cφ2 U bond , where C is a constant. We

an add this contribution to the total strain energy stored in the

etwork due to compression and then differentiate the resulting

xpression to get a new stress-strain law in the densified phase

hat accounts for adhesion of fibers at contact points, yielding 

= kE 
(
φ3 − φ3 

0 

)
− 2 Cφ2 

0 U bond 

( 1 − ε ) 3 
= 

B − A 

( 1 − ε ) 3 
− B, (12)

here A = 2 CU bond φ
2 
0 , B = kEφ3 

0 
are two constants that are ob-

ained by fitting to the experimental stress-strain curves in the

ensified phase. Finally, 

�L ( σ ) = 

σ

E 
, 

H ( σ ) = 1 − 3 

√ 

B − A 

σ + B 

, 

γT ( σ ) = 1 − 3 

√ 

B − A 

σ + B 

− σ

E 

(13)

 similar exercise accounting for contacts with adhesion was also

erformed by Hutchens et al. (2012) , but they simplified the re-

ulting expressions to modify the visco-plastic hardening law in

he plateau region of the stress-strain curve. We can use the re-

ults above to derive an expression for the driving force f in the

uasi-static limit. We know from Abeyaratne–Knowles Abeyaratne

nd Knowles (2006) that: 

f (σ ) = 

∫ σ

σ0 

γT (σ
′ ) dσ ′ , (14)

here σ 0 is a Maxwell stress. Recall that at the Maxwell stress,

he Helmholtz free energy density of the two phases is equal. The

riving force f derived above enters a kinetic relation describing

he evolution of the internal variable s ( t ). For simplicity we use

he following kinetic relation: 

˙ 
 = �( f ) = 

{ 

M LH ( f − f LH ) , if f > f LH , 

0 , if f HL ≤ f ≤ f LH , 

M HL ( f − f HL ) , if f < f HL . 

(15)

ere M LH > 0 and M HL > 0 are mobility parameters which we

ill later fit to the experimental data. Also, f and f correspond,
LH HL 
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Table 1 

Fitting parameters for the uniaxial compression experiment. 

Group E (MPa) B (MPa) A (MPa) σ LH (MPa) σ HL (MPa) M lh (MPa −1 s −1 ) M hl (MPa −1 s −1 ) 

Bare CNT 6 0.67 0.66 1 0 0.35 0.3 

ALD 5 cycle 8 0.61 0.60 2 0.2 0.5 0.3 

ALD 10 cycle 20 1.37 1.36 3.7 0.5 0.09 0.12 
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espectively, to stresses σ LH and σ HL which may be determined

sing Eq. (14) s. Our justification for choosing such a “stick-slip”

ype kinetic relation is as follows. We know from earlier work that

hermal sliding of contacts between CNTs occurs when a CNT for-

st is compressed Radhakrishnan et al. (2013) ; Mesarovic et al.

2007) . Thermally activated processes are governed by Arrhenius

ype kinetics which can be linearized for small driving forces to

ive a linear kinetic law of the type ˙ s = M f where M is a con-

tant Abeyaratne and Knowles (2006) . We also know from com-

utations Torabi et al. (2014) ; Volkov et al. (2009) and experi-

ents Qiu et al. (2011) that the CNTs reorient as the forest trans-

orms from a rarefied phase to the densified phase. The kinetics

f the reorientation is difficult to obtain, but it is clear that these

rocesses produce a material that is heterogeneous at length scales

uch smaller than the specimen size. It has been shown that this

ort of heterogeneity combined with a linear kinetic law at the mi-

roscopic scale leads to a stick-slip type of kinetic relation at the

acroscopic scale Bhattacharya (1999) . That said, the choice of ki-

etic relation above is not sacrosanct; the appropriate kinetic law

hould be deduced by fitting to experiment or nanoscale computa-

ions. The kinetic law, Eq. (15) , fits the experiments described here

uite well (as shown later). 

In order to complete the formulation of the problem, we need

 nucleation criterion. For loading, when the specimen is being

ompressed, the densified phase nucleates in the rarefied phase at

tress σ LH where σ LH can be assumed to be where driving force f is

ust greater than f LH so that the phase boundary makes its appear-

nce and immediately moves. Similarly, for unloading, the rarefied

hase nucleates in the densified phase at stress σ HL where driving

orce f is just smaller than f LH . 

The experiment is performed at a constant rate ˙ δ < 0 during

oading. Initially, the entire continuum is in the rarefied phase. As

he compressive strain ε increases, the stress σ increases linearly

nd reaches the critical value σ LH ; this is when a phase bound-

ry nucleates at the top of the CNT pillar ( x = L ), with the den-

ified phase on its top and the rarefied phase on its bottom. The

tress in the continuum is now governed by Eq. (7) with initial

ondition σ = σLH given by the nucleation criterion. The kinetic

elation enters the mechanics through �̄(σ ) . The phase boundary

oves through the continuum and converts all the material into

he densified phase. Once the phase boundary has reached x = 0 ,

q. (7) , the nucleation criterion and the kinetic relation are no

onger required. The stress is the determined by the constitutive

aw �H ( σ ) since all the material is in the densified phase. When

e unload 

˙ δ > 0 , the stress declines along the curve �H ( σ ) until

 critical value σ HL is reached at which a phase boundary nucle-

tes at x = 0 . Then σ ( t ) is again governed by Eq. (7) with initial

ondition σ = σHL . This differential equation remains relevant until

he phase boundary has traversed the full length of the specimen

eaching x = L . After this, the stress follows the curve �L ( σ ) in the

arefied phase. 

We have fitted the experimental data in Fig. 3 from the mea-

ured loading and unloading response of three different samples

sing the methods described above. In Fig. 3 , the experimental

ata is represented by discrete markers and the model fit is shown

s a continuous line. The strain rate ˙ δ/L for these experiments was

.001 s −1 . The parameters obtained from the fits are summarized
n Table 1 . Our phase transitions model captures the main fea-

ures of the stress-strain curve quite well. The fitting parameters

re E of the rarefied phase, two constants A and B of the densified

hase (recall that A captures the release of free energy per adhe-

ive bond and B is a modulus with units of stress for the densified

hase), σ LH and M LH for the upper plateau and σ HL and M HL in the

ower plateau. The theoretical lines fall on top of the experimental

ata for the linear elastic response in the rarefied phase and the

on-linearly elastic response in the densified phase. The plateaus

n loading/unloading are also captured except for the stress-jumps

een in the loading plateau, on which we will comment later. We

ote that the Young’s moduli in the rarefied phase of the bare CNT

illars is the smallest. The Young’s modulus in the rarefied phase

ncreases as the thickness of the ALD alumina coating increases.

imilarly, the stress at which the densified phase nucleates is also

owest for the bare CNTs and it increases as the thickness of the

LD layers increases. This is expected since increasing the thick-

ess of the CNTs increases their stiffness causing an increase in

he Young’s modulus in the rarefied phase. The densified phase is

ucleated when the fibers buckle. The critical stress σ LH is deter-

ined for foams from a knowledge of the buckling load of single

bers and the density of the network. For example, in Cao et al.

2005) the critical stress for buckling of a foam with CNT volume

raction of 13% was 12 MPa, so critical stress for buckling of a sin-

le nanotube was estimated to be about 12 MPa/0.13 ≈ 92 MPa.

n our bare CNT samples we estimate that the diameter of the

NTs is d ≈ 10 nm and the spacing between adjacent CNTs is D ≈
00 nm, on average. Thus, φ0 ≈ ( d / D ) 2 ≈ 0.01. The buckling stress

LH for the bare CNT pillars in our experiments was about 1 MPa,

o that the critical stress for buckling of a single nanotube is ap-

roximately σLH /φ0 = 1 MPa/0.01 ≈ 100 MPa which is in the

ame range as that of Cao et al. (2005) . If the bending stiffness is

igher due to increased thickness of the ALD layers then σ LH also

ust increase. This is exactly what we see in fitting our model to

he experimental data. 

It is difficult to assess the reasonableness of the mobility pa-

ameters M LH and M HL as they have not been measured previ-

usly in experiments. However, we can predict the stress–strain

esponse in loading/unloading of the same samples at different

train rates ˙ δ. We have done this exercise for two other strain rates

0.01 s −1 and 0.1 s −1 ) with the parameters shown in Table 1 . The

orresponding experimental stress-strain curves for these strain-

ates are plotted together with the theoretical predictions in Fig. 4 .

emarkably, the agreement between theory and experiment indi-

ates that the parameters we have obtained from fitting one set

f experimental data are useful in describing the constitutive re-

ponse of the material at other strain-rates as well. In particular,

he nucleation stresses and our choice of the kinetic law gives a

mall strain-rate dependence of the hysteresis which is consistent

ith earlier experiments Pathak et al. (2012) ; Raney et al. (2013a );

013b ). If the motion of the phase boundary was independent of

he stresses then our model would reduce to the rate-independent

ysteresis models of Fraternali et al. (2011) ; Blesgen et al. (2012) ;

aney et al. (2013a ); 2013b ). 

Finally, we point to an important feature that has not been

aptured by our phase transition model described above. Note in

ig. 3 and Fig. 4 that near a strain of 0.8 (which corresponds to
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Table 2 

Change of phase fractions at stress jumps. 

Group Number of jumps studied 
s (μm) 

Bare CNTs 9 0.27 ± 0.09 

CNTs with 5 ALD cycles 6 0.21 ± 0.1 

CNTs with 10 ALD cycles 8 0.20 ± 0.16 
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most of the pillar being in the densified phase) the experimental

loading and unloading curves are not identical at the end of load-

ing. This was observed in simulations of fiber networks by Barbier

et al. (2009) and attributed to friction between contacting fibers.

In our experiments, the increased contact between the CNTs in the

densified phase exacerbates this effect. In fact, the loading and un-

loading curves in our nanoindentation experiments are also differ-

ent, indicating dissipation. 

3.4. Stress jumps at the plateau, buckling wavelength and interfacial 

energy 

Our constitutive model yields a plateau in the stress-strain

curve that is smooth. This is not what we see in experiments. In

fact, the stress-plateau in the experimental data invariably has a

few jumps in the stress (shown in Fig. 4 for various strain rates),

which are caused by nucleation of the densified phase away from

the moving phase boundary. In this section we will quantify these

jumps using Eq. (4) . For each jump the phase fraction s ( t ) changes

suddenly and we can estimate the phase fractions from the strains

before and after the jumps using: 

s − = 

δ−/L − �L (σ−) 

�H (σ−) − �L (σ−) 
, 

s + = 

δ+ /L − �L (σ+ ) 
�H (σ+ ) − �L (σ+ ) 

. 

(16)

where the subscript −, + indicates variables before and after the

jump, respectively. We will denote 
s = s + − s −. Using Eq. (16) , we

estimate 
s from all visible stress jumps in the experimental data

in Fig. 4 . We present the results in Table 2 . 

The above analysis assumed that the interface is sharp (a dis-

continuity in strain ε( Z )), but in experiments the interface is

diffuse with a continuous ε( Z ). Such diffuse interfaces between

the rarefied and densified phases have been characterized using

viscosity-strain gradient models for phase boundaries described in

Abeyaratne and Knowles (2006) and references therein. For exam-

ple, Turtletaub (1997) augments the Helmholtz free energy den-

sity of a phase changing material with an interfacial energy den-

sity term 

λ
2 

(
dε 
dx 

)2 
where λ is the strain-gradient or capillarity pa-

rameter. In such a theory for phase boundary motion one then

looks for a traveling wave solution (moving at velocity V n ) of

the regularized equations as discussed in Abeyaratne and Knowles

(2006) and references therein. If the stress-strain relation of our

CNT forests is modeled as a cubic σ − σ0 = α(ε − ε ∗) − β(ε − ε ∗) 3 

then a viscosity-strain gradient model Abeyaratne and Knowles

(2006) with V n = 0 and λ as the strain-gradient or capillarity pa-

rameter gives a differential equation for ε(Z) = ε(Z) − ε ∗: 

λ
d 2 ε

dZ 2 
+ αε − βε3 + σ − σ0 = 0 . (17)

The solution to this differential equation is 

ε(Z) = ε(Z) − ε ∗ = a + b tanh 

(
Z − Z 0 

c 

)
, (18)

when the remote conditions at ± ∞ are constant strains ε(∞ ) =
a + b in the densified phase, and ε(−∞ ) = a − b in the rarefied

phase. We fit the experimental strain profiles ε( Z ) for the 10 ALD

cycles pillars in the Fig. 5 b using Eq. (18) and obtain a = 0 . 31 , b =
 . 3 , c = 0 . 2 μm. This is a relatively sharp interface, consistent with

he displacement profiles shown in Fig. 5 a. We performed similar

alculations on the CNT compression experiments in Maschmann

t al. (2012) and obtained a = 0 . 315 , b = 0 . 3 , c = 2 μm from fits to

he experimental strain profiles in Fig. 5(b) of Maschmann et al.

2012) . 

The interface width, 2 c , is directly proportional to the buckling

avelength. According to Zbib et al. (2008) the presence of this

uckling wavelength indicates that a continuum model with an in-

rinsic material length scale is required to model CNT forests. How

his internal length scale depends on statistical parameters of the

NT forest was investigated by Torabi et al. (2014) who showed

hat the buckling wavelength depends on tortuosity K , density l

nd connectivity γ (these are symbols used in Torabi et al. (2014) )

n the undeformed state. They deduced an empirical relation c 
√ 

l =
1 + β2 γ /K where β1 , β2 are constants. On the other hand, the

uckling stress σ b in Torabi et al. (2014) increased linearly with

ncreasing l and was only weakly dependent on γ / K . Thus, we ex-

ect from Torabi et al. (2014) that c should vary inversely with σ b .

ow, in our CNT forests with 10 ALD cycles c = 0.2 μm and σ b ≈
.5 MPa (for bare CNT forests σ b ≈ 1.3 MPa), while in Maschmann

t al. (2012) c = 2 μm and σ b ≈ 0.6 MPa. The inverse relationship

etween σ b and 
s ( 
s is proportional to c ) can also be seen in

able 2 and Table 1 . Thus, our results for trends in c vs. σ b are

onsistent with those of Torabi et al. (2014) . Torabi et al. (2014) re-

ate c to tortuosity, density and connectivity, all of which should

ncrease as we cross the interface from the rarefied to the densi-

ed phase, while we surmise that c is connected to the interfacial

nergy in the viscosity-strain gradient model described, for exam-

le in Turtletaub (1997) , and other references in Abeyaratne and

nowles (2006) . Intuitively, these two descriptions of the intrinsic

ength scale are not unrelated – interfacial energy arises because

he environment of a material point on the two sides of an inter-

ace are different Israelachvili (2011) . A final point to note is that

he interfacial energy depends on the square of the strain-gradient

n the viscosity-strain gradient model of Turtletaub (1997) . Strain-

radient elasticity theories Toupin (1962) ; Koiter (1964) ; Mindlin

nd Eshel (1968) in which the elastic energy depends quadratically

n both strains and strain-gradients naturally have intrinsic length

cales. 

. Indentation of CNT forests 

The experiments and analysis discussed thus far have resulted

n a micro-structurally motivated continuum model based on the

echanics of foams and the theory of phase transitions. Our goal

ow is to test the applicability of this model by using it to inter-

ret nanoindentation experiments ( Fig. 2 d) on the same materials. 

.1. Experiment 

The nanoindentation experiments were performed using a

ysitron®TI-950 Triboindenter TM , fitted with a conical diamond

ndenter tip with spherical end. As shown in Fig. 2 d, the inden-

er has a radius of about 1μm and an included angle of 90 °, which

s much smaller than the height and diameter of the CNT pillars

both 20 μm). We performed a series of loading and partial un-

oading tests with controlled peak load as shown in Fig. 6 a. Spe-

ially, there were 10 cycles of loading and unloading at each loca-

ion. In each cycle, except the last cycle, the load was ramped up

o a fixed peak load in 2s and then unloaded to 5% of its peak load

n another 2s (see Fig. 6 a inset). In the last cycle, the sample was

ully unloaded and the indenter was completely withdrawn from

he surface. The peak load was increased uniformly from 5μN up

o 50μN. Three different samples, i.e. bare CNT, and 5 and 10 cycles
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Fig. 6. (a) Force-displacement curve for a bare CNT pillar in a nanoindentation experiment (black solid line). The inset shows the scheme of loading and unloading cycles 

in our nanoindentation experiment. (b) Force-displacement curve for a CNT pillar with 5 ALD cycles in a nanoindentation experiment. The inset is a figure showing the 

position z 0 and phase boundary z p used in calculating the displacement underneath the point load. (c) Force-displacement curve for a CNT pillar with 10 ALD cycles in 

a nanoindentation experiment. Note that hysteresis increases with increasing load in panels a,b,c. There is a residual displacement at the end of each unloading. The red 

dashed lines through the peak loads in panels a,b,c are fits using Eq. (26) which combines the Boussinesq solution and a phase transition model. The slope of the red dashed 

lines through the loops in panels a,b,c are the experimental stiffnesses S . (d) Plots of 1/ z p versus 1/ S for each loading/unloading loop, respectively for bare CNTs, CNTs with 

5 ALD cycles, and CNTs with 10 ALD cycles. Solid lines are from Eq. (27) s with parameters E 1 , E H , and z 0 from Table 3 . (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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w  
f ALD coated CNT pillars, were measured. For each material, 6 dif-

erent pillars were tested. The indentation tests were always per-

ormed at the center of each individual pillar. Force-displacement

urves were collected during experiments. One such curve each is

hown as the black solid line in Fig. 6 a for bare CNT, Fig. 6 b for

NTs with 5 cycles ALD coating and Fig. 6 c for CNTs with 10 cycles

LD coating. Notice that there is hysteresis in each cycle of load-

ng/unloading and it increases at larger forces. This is true for bare

NTs, as well as CNTs with 5 ALD cycles and CNTs with 10 ALD cy-

les. Also notice that the residual displacement at zero load at the

nd of each cycle keeps increasing as the peak load increases. We

how below that this is a consequence of the phase transition in

he CNT forest. 

.2. The Hertz contact solution 

Since our indenter has a spherical tip, we first assess if the

ertz contact solution can provide an adequate description of our

xperiments. Recall that for the Hertz solution the contact radius a ,

he indentation depth δ and the maximum pressure p 0 are related

hrough Johnson (1985) 

 = 

(
3 P R 

4 E ∗

)1 / 3 

, δ = 

(
9 P 2 

16 RE ∗2 

)1 / 3 

, p 0 = 

(
6 P E ∗2 

π3 R 

2 

)1 / 3 

, 

(19) 

here R is the radius of the indenter, P is the load and 

1 

E ∗
= 

1 − ν2 
in 

E 
+ 

1 − ν2 
hs 

E 
, (20) 
in hs 
here E in , ν in are the Young’s modulus and Poisson ratio of the in-

enter and E hs , νhs are those for the half-space. In our experiments

 in is very large in comparison to E hs and νhs ≈ 0, so we take

 

∗ = E hs . For small loads P we expect that the entire half-space

ill be in the rarefied phase which is modeled as a linear elastic

aterial with Young’s modulus E . When the pressure p 0 reaches

 critical value σC = σLH then the densified phase should nucleate

ight underneath the indenter. For bare CNTs we take E = 6 MPa

see Table 2 ), we know from experiments that R = 1 μm, so we

stimate P = 0 . 14 μN when p 0 = σHL = 1 MPa. At P = 0 . 14 μN, Eq.

19) gives a = 0 . 26 μm and δ = 0 . 068 μm. The Hertz solution is a

ood approximation to the contact problem of a spherical indenter

n a half-space for a / R < 0.1, and according to Yoffe (1984) , can

ead to logical inconsistencies if applied outside the range a / R <

.2. As we violate these limits at a load of 0.14μN which is smaller

han most of the loads in the experiments, the Hertz solution is

learly not suitable. Our problem involves a phase transition, so

he corrections to the Hertz solution detailed in Yoffe (1984) and

ased on first-order linear elasticity also cannot be applied. Thus,

e analyze the problem with a point load on a half-space. As de-

ailed below the point load approximation is more appropriate for

arge values of P for which the ratio of indentation depth to in-

enter radius, δ/ R > 1. The contact problem could also be analyzed

sing the finite element method but this is beyond the scope of

he current work. 

.3. Point load on a half-space capable of phase transitions 

The indenter is small compared to the sample size (1/20), thus

e approximate the indentation test using the Boussinesq solution
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Table 3 

Fitting parameters for nanoindentation experiment.(The error-bars account for distinct nanoin- 

dentation groups.) 

Group Bare CNTs CNTs with 5 ALD cycles CNTs with 10 ALD cycles 

z 0 (μm) 1.8 1.38 1.06 

E 1 (MPa) 6.14 ± 0.42 5.44 ± 1.01 13.30 ± 1.11 

E H (MPa) 38.82 ± 0.89 62.76 ± 1.58 111.11 ± 2.33 

γ T (indentation) 0.562 ± 0.007 0.655 ± 0.044 0.362 ± 0.026 
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for a half-space with a point-load as in Craig (2013) . The load is

applied perpendicular to the surface of the half-space and the dis-

placement underneath the load for a homogeneous half space is

given by: 

u = 

3 P 

2 πEz 
, (21)

where P is the applied point load, z is the depth from the surface

and E is a reduced modulus with effect of Poisson ratio included.

The stress distribution σ( r, z ) within the half space for this axi-

symmetric problem is given by: 

σz = 

3 P z 3 

2 πR 

5 
, 

σr = 

P 

2 πR 

2 

[
3 r 2 z 

R 

3 
− ( 1 − 2 ν) R 

R + z 

]
, 

σθ = 

( 1 − 2 ν) P 

2 πR 

2 

[ 
R 

R + z 
− z 

R 

] 
, 

τrz = 

3 P r z 2 

2 πR 

5 
. 

(22)

where r is reference radius in the polar coordinate system, and

R = 

√ 

r 2 + z 2 . This solution is valid for infinitesimal strains and

isotropic linear elastic materials. However, the CNT forests we

study are capable of phase transitions. Hence, underneath the ap-

plied load, where the stresses are very large, we expect that the

CNT forests will be in the densified phase as shown in Fig. 2 a. In

order to accommodate this possibility we replace Eq. (10) in the

densified phase with a linearized version 

�H ( σ ) = γT + σ/E H , (23)

where the modulus E H in the densified phase is much larger than

that in the rarefied phase. This simplifying assumption enables us

to exploit the Boussinesq solution. Since we know the expression

for the stress σ z in the Boussinesq solution the location of the

phase boundary ( r, z ) for given P is determined by setting σ z (from

Eq. (22) ) equal to a critical stress of nucleation σ C , or: 

3 P z 3 = 2 πσC 

(
r 2 + z 2 

) 5 
2 
. (24)

This critical stress σ C is taken to be σ LH in compression and the

shape of a typical phase boundary described by Eq. (24) is shown

in the inset of Fig. 6 b. As the load increases, the phase boundary

will move deeper into the half space, and thus the region contain-

ing the densified phase will increase its volume. There is a jump

in strain across this phase boundary, but there is no jump in stress

since the phase boundary moves in a quasi-static manner. Since

the expressions in Eq. (22) for the stress field are not a function

of the Young’s modulus and we assume that the material is linear

elastic in both phases, they are valid on both sides of the phase

boundary. 

Next, we must obtain an expression for the normal displace-

ment along the center line ( r = 0 ). Let z = z p (0 ≤ z, z p < ∞ ) be

the position of the phase boundary along r = 0 . For z > z p (along

r = 0 ) the CNT forest is in the rarefied phase for which ε z = 

σz 
E 1 

where E 1 is a Young’s modulus, while for z < z p the CNT forest is
n the densified phase for which we have used a linearized stress-

train relation Eq. (23) . Due to the symmetry of the problem the

isplacement u (0, z ) for a point z ( z < z p < ∞ ) along r = 0 can be

btained by integrating ε(0, z ) as follows: 

 (0 , z) = 

∫ ∞ 

z p 

σz 

E 1 
d z + 

∫ z p 

z 

(
σz 

E H 
+ γT 

)
d z 

= 

3 P 

2 π

(
1 

E 1 z p 
+ 

1 

E H z 
− 1 

E H z p 

)
+ γT (z p − z) . (25)

e see that u (0, z ) → ∞ , as z → 0. This happens because the lin-

arized stress-strain law Eq. (23) is valid only for 0 ≤ σz ≤ E H (1 −
T ) , while σ z → ∞ , as z → 0 along r = 0 in the point load solu-

ion. If in the integral for u (0, z ) above we use the fully non-linear

tress-strain law for the densified phase, Eq. (10) instead of Eq.

23) , then the displacement u (0, 0) does not blow up even though

z (0, 0) becomes infinite. To correct for our use of the linearized

tress–strain law Eq. (23) for the high strain phase, we introduce a

osition z 0 and compute δ underneath the load as 

= 

3 P 

2 π

(
1 

E 1 z p 
+ 

1 

E H z 0 
− 1 

E H z p 

)
+ γT (z p − z 0 ) . (26)

 0 is the depth along the center line where σz (0 , z 0 ) = σLH for

he P at which the load-indentation depth curve suddenly changes

lope (around 8μN) for all samples. By using Eq. (26) to compute

isplacements underneath the load we are assuming tacitly that

he CNT forest above this reference position z 0 is in a highly densi-

ed and stiff state due to large stresses (see the inset of Fig. 6 b), so

hat the displacement at z 0 is nearly equal to the displacement un-

erneath the indenter. We will use Eq. (26) to interpret our nano-

ndentation data on the CNT forests. A consequence of Eq. (26) is

hat the stiffness (slope of the load versus indentation depth curve)

hanges as z p changes. 

In the experiments each sample is loaded and unloaded in a

yclic manner according to the protocol shown in the inset of

ig. 6 a. In the first cycle the load is increased at a constant rate

p to P 1 , and then it is decreased to nearly zero at a constant rate.

n the second cycle the same protocol is followed but the max-

mum load is P 2 > P 1 . In the third cycle the maximum load is

 3 > P 2 , and so on for all subsequent cycles. A typical load in-

entation curve is plotted in Fig. 6 a as the black line. Notice that

here is a change in the slope of the line at P ≈ 8μN, due to soft-

ning, presumably caused by the phase transition. We determine

 0 for this sample by setting σz (z 0 ) = σc at P ≈ 8μN. σ c are cho-

en based on the nucleation stress σ LH in Table 2 , respectively,

or the three different CNT pillars, and the calculated z 0 are re-

orted in Table 3 . For P > ≈8μN the phase boundary moves to z p 
 z 0 along the line r = 0 (shown in the inset of Fig. 6 b). During

nloading, the phase boundary does not move inward because of

ur choice of the kinetic relation and also because the nucleation

tress for the rarefied phase is very small as can be seen in Table 1 .

ence, the phase boundary remains static and the region inside

s unloaded along the stress-strain curve of the densified phase.

herefore, the slope of the re-loading curve is larger than the ini-

ial loading curve. 

When the load is reduced to zero, there is some residual de-

ormation due to the transformation strain γ in Eq. (26) above.
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Fig. 7. Fitting of compression experiment using a linear stress-strain relation in 

densified phase for bare CNT (black dots), CNTs with 5 ALD cycles (red dots) and 

CNTs with 5 ALD cycles (blue dots). The lines are obtained from the phase transi- 

tion model with parameters listed Table 4 . The blue line corresponds to specimen 

in the rarefied phase, red line to a mixture of rarefied and densified phases during 

loading, black line to densified phase and green line to a mixture of rarefied and 

densified phases during unloading. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

F  

w  

t  

m  

(  

h  

m  

r  

2  

t  

t  

r

A

 

e  

a  

b  

e  

#

A

F

s

 

l  

i  

u  

n  

n  

d  

a

�

W  

T  

t  

c

hen the load is increased again the phase boundary moves out-

ard only when the load exceeds P 1 , and it stops when the peak

oad P = P 2 is reached. Hence, we can compute the new z p for the

econd re-loading curve. By following the same procedure for all

he loading/unloading cycles we can predict the indentation depths

or the peak loads P 2 , P 3 , P 4 , .., etc. Since we use the point load

olution we have fitted E 1 , E H and γ T in Eq. (26) to match the in-

entation depths at the peak loads P 1 , P 2 , P 3 , . . . etc., and the last

nloading curve from a peak load of 50μN. The resulting parame-

ers are shown in Table 3 for the three different materials and typ-

cal experimental curves with fits appear in Fig. 6 a for bare CNTs,

ig. 6 b for CNTs with 5 ALD cycles and Fig. 6 c for CNTs with 10 ALD

ycles. We see that the values of E 1 are close to E obtained from

tting the uniaxial compression data. The transformation strains

T are close to the magnitude of the strain jumps at the stress

lateaus for each of the three types of CNT pillars and the trend in

he E H values indicates that the Young’s modulus in the densified

hase increases as the ALD alumina coating thickness increases. In

he appendix we use a linear stress-strain relation for the densi-

ed phase to refit the uniaxial compression experimental data and

btain Young’s modulus of both rarefied and densified phases E L ,

 H respectively, and transformation strain γ T . We compare them

ith the same parameters extracted from fitting the nanoinden-

ation experiments and find that all of them are consistent. This

hows that the same phase transition model can quantitatively de-

cribe both uniaxial compression as well as nanoindentation exper-

ments. 

As a test of our analysis we consider the slope S of our load-

ndentation depth curve. The slope S (during unloading when z p 
emains fixed) can be obtained from Eq. (26) as 

 = 

2 π

3 

[
1 

E 1 z p 
+ 

1 

E H z 0 
− 1 

E H z p 

]−1 

. (27) 

s the phase boundary goes deeper into the half-space, Eq. (27) re-

eals that the stiffness increases. The increase in stiffness is ex-

ected because more densified phase is created as we go to higher

oads. To test Eq. (27) we first extract the experimental stiffnesses

 for each loading/unloading loop by drawing a line through the

oint where the loading and unloading curves intersect and the

oint at the bottom of each loop in Fig. 6 a, 6 b and c. We then

lot 1/ S as a function of 1/ z p in Fig. 6 d for each of the three mate-

ials. The lines in each panel are those expected from Eq. (27) with

arameters from Table 3 . We find that the agreement between the

xperimental stiffnesses and Eq. (27) is reasonable for low values

f 1/ z p , or for large values of z p which happen at large values of

 . Also, the agreement is best for bare CNTs in which we get the

ighest indentation depths. Thus, our analysis based on a point

oad solution agrees well with experiment when the indentation

epths are larger than the indenter radius, which is not entirely

nexpected. 

. Conclusion 

In this paper we have shown that a model for phase tran-

itions in continua can describe the deformation of CNT forests

oth in uniaxial compression and nanoindentation experiments.

e have used specialized constitutive laws in the rarefied and den-

ified phases that are based on the bending of individual fibers.

e have modified well-known models for the compression of

ber networks in the densified phase to account for sticking of

he fibers. Some features in our model, such as, rate-dependence

nd fiber-to-fiber adhesion are also present in the models of

utchens et al. (2011 , 2012) , but we describe reversible deforma-

ions with hysterisis, while Hutchens et al. focus on irrecoverable

eformation. Our model also shares some features with those of
raternali et al. (2011) ; Blesgen et al. (2012) , such as, the multi-

ell energy landscape of the springs. However, our’s is a con-

inuum model which can be used to study a broader class of

aterials and mechanical behaviors (see, for example, Kim et al.

2015) where we apply similar ideas to fibrin networks). We

ave exemplified this by performing experiments on ALD alu-

ina coated CNT pillars and shown how their mechanical pa-

ameters are affected by ALD coating thickness ( Davami et al.,

016 ). Our model could eventually be used to further understand

he structure-property relationships of CNT forests, and therefore

o design CNT forest morphologies to have tailored mechanical

esponse. 
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ppendix 

itting the uniaxial compression experiment using a piece-wise linear 

tress–strain relation 

Our goal here is to show that a piece-wise linear stress-strain

aw, like the one we used to describe the nano-indentation exper-

ment, can also quantitatively capture the stress-strain plots of the

niaxal compression experiments. In the main text we had used a

on-linear relation to model the densified phase which we could

ot exploit in the solution of the Boussinesq problem for nanoin-

entation. A piece-wise linear stress-strain relation for the rarefied

nd densified phases is: 

�L ( σ ) = 

σ

E L 
, 

H ( σ ) = γT + 

σ

E H 
, 

(28) 

e have used this to refit the compression experiment in Fig. 7 .

he fitting parameters are summarized in Table 4 . We compare

hem with the same parameters from nanoindentation and show

onsistency. 

http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.13039/100000015
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Table 4 

Comparison of linear phase transition model parameters used in nanoindentation vs uniaxial com- 

pression. 

Group Bare CNTs CNTs with 5 ALD cycles CNTs with 10 ALD cycles 

E L (MPa) (indentation) 6.14 ± 0.42 5.44 ± 1.01 13.30 ± 1.11 

E L (MPa) (compression) 6 8 20 

E H (MPa) (indentation) 38.82 ± 0.89 62.76 ± 1.58 111.11 ± 2.33 

E H (MPa) (compression) 40 60 150 

γ T (indentation) 0.562 ± 0.007 0.655 ± 0.044 0.362 ± 0.026 

γ T (compression) 0.747 0.70 0.76 
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