19th International Conference on Atomic Layer Deposition

ALD and MLD on Lithium Metal – A Practical Approach Toward Enabling Long Lasting, High Energy Density Batteries

Andrew Lushington^{1,2}, Yang Zhao², Lydmila Goncharova³, Qian Sun², Ruying Li², Xueliang Sun²

¹Research, Development and Engineering *Arradiance Sudbury, Massachusetts, USA* ²Department of Mechanical and Materials Engineering University of Western Ontario London, Ontario, Canada

³Department of Physics and Astronomy University of Western Ontario London, Ontario, Canada

Tuesday July 23rd 2019

Session: AA2-TuM

Growing Electrical Vehicle Market

Plug-in hybrid-electric vehicle

Battery-electric vehicle

Global electric-vehicle sales, 2010-17, thousands, CAGR¹

Electric vehicle market has significantly grown in the past decade

An increasing number of manufactures are entering the electric vehicle market

Hertzke, P., Muller, N., Schenk, S. & Wu, T. The global electric-vehicle market is amped up and on the rise. *McKinsey & Company*(2018).

New Materials Required for the Future

Cano, Zachary P., et al. "Batteries and fuel cells for emerging electric vehicle markets." *Nature Energy* 3.4 (2018): 279. Osiak, Michal, et al. "Structuring materials for lithium-ion batteries:" *Journal of Materials Chemistry* A 2.25 (2014): 9433-9460. 3 Western

Problem With Li Metal Anodes

Western

Lin, Dingchang, Yayuan Liu, and Yi Cui. "Reviving the lithium metal anode for high-energy batteries." *Nature nanotechnology* 12.3 (2017): 194.

Use ALD and MLD to Passivate Surface

TMA-H₂O

TMA-EG

H₃C

H₃C

ARRADIANCE

 CH_3

TMA-GLY

 CH_3

+

+

ĊΗ₃

HO

CH3

HO

$H_{3C} \xrightarrow{CH_{3}} H$

HO

റ്

HO

HO

- Previous research indicates positive results
- Can be done at low temperatures (RT)
- Water can react with Li

•

٠

- Dense film may not allow for good Li⁺ conduction
- Increase film flexibility by MLD linkage
- Relatively low deposition temperature (90°C)
- Does not include water
- Highly Robust

- Continued reaction (dbl side reactions do not limit surface sites)
- Increased cross linking

- Increase chance of double side reactions
- Long purge times

- Requires high deposition temperatures (150°C)
 - Long purge times

٠

OH

Symmetrical Cell Testing

Current Density (mA cm⁻²): How quickly Li is transferred from electrode → electrode Capacity (mAh cm⁻²): How much Li is transferred per charge/discharge cycle

Symmetrical Cell Testing

EC:DEC:DMC $1M LPF_6$ (carbonate)

Current Density (mA cm⁻²): How quickly Li is transferred from electrode \rightarrow electrode Capacity (mAh cm⁻²): How much Li is transferred per charge/discharge cycle

Westeri

Understanding the Li Mechanism

Wood, Kevin N., et al. "Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy." *ACS central science* 2.11 (2016): 790-801.

ARRADIANCE

Galvanostatic Intermission Titration Technique

GITT can limit the effects of evolving concentration gradients on cell polarization by depositing small amounts of Li at near static-equilibrium conditions.

By using half-cell configuration, where one Li electrode is bare and the other is coated, we can deconvolute the effects of stripping and plating of coated Li

Plating Characteristics

Stripping Characteristics

Using GITT to Understand Role of ALD:MLD

Increased cross

linking

times

11 Western

conduction

temperatures (RT)

Full Cell Battery Data

- Conducted full cell battery testing using 50cy TMA-GLY coated Li anodes with two different cathode materials:
 - Lithium Iron Phosphate (LFP) Future Li-Ion Battery
 - Carbon/Sulfur Li/S Battery
- LFP Lithium Ion Battery
 - Considered a more environmentally friendly material compared to LiCoO₂
 - Coin cells tested using loading of ~ 10mg
 - Carbonate based electrolyte (1M LiPF₆ in EC, DEC, EMC w FEC)
 - Constant current in a voltage range of 2.5-4.2V
- Carbon/Sulfur Lithium-Sulfur Battery
 - Much higher energy density compared to Lithium ion
 - Coin cells tested using loading of ~1mg
 - Ether Based electrolyte (1M LiTFSI in DOL, DME w LiNO₃)
 - Constant current in a voltage range of 1.8-2.8V

Final Remarks

- First comparison of Li coated with TMA-H₂O, TMA-EG and TMA- GLY
- Galvanostatic cycling of Li-Li symmetric cells identified that TMA-GLY can improve the lifetime of Li compared to TMA- H₂O and TMA-EG
- GITT is a powerful technique that can be used to eliminate the effects of concentration gradients that build up within the cell
- Stripping and plating is an easier process on Li coated with TMA-GLY compared to TMA-H₂O
- Full Cell Data shows the coated Li works well for both LFP and Li-S cathode systems

Dr. Sun's Nanomaterials and Energy Group

Canada Excellence Research Chairs Chaires d'excellence en recherche du Canada

Canada Foundation for Innovation Fondation canadienne pour l'innovation

ARRADIANCE_® Molecular Innovation[™]

