On the possibility to count fast neutrons with high spatial and timing resolution

A.S. Tremsin

University of California at Berkeley, Berkeley, CA 94720, USA

in collaboration with

Nova Scientific (thermal and epithermal neutron detection) 10 Picker Rd., Sturbridge, MA 01566, USA

Arradiance (fast neutron detection) 142 North Road, Suite F-150, Sudbury, MA 01776, USA

Many beamline scientists at neutron facilities and Medipix collaboration

Fast neutron imaging workshop, Garching, Oct. 2019

The work done in collaboration

CERN Medipix team	
Advacam	
NIKHEF, Amsterdam	
IEAP, Prague	
University of California at Berkeley, CA, USA	
A.S. Tremsin, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmu	nd
Nova Scientific, Inc, Sturbridge, USA (manufacturer of neutron	sensitive MCPs)
W. B. Feller, P. White, B. White	
Rutherford Appleton Laboratory, ISIS Facility, UK	
W. Kockelmann, J. Kelleher, S. Kabra, D.E. Pooley, G. Burc	a, T. Minniti, E. Schooneveld, N. Rhodes
J-PARC Center, JAEA, Nagoya University, Japan	
Y. Kiyanagi, T. Shinohara. T. Kai, K. Oikawa	
LANSCE, Los Alamos National Laboratory	Lawrence Berkeley Laboratory
S. Vogel, A. Losko, M. Mocko, M.A.M. Bourke, R. Nelson	D. Perrodin, G.A. Bizarri, E.D. Bourret
Paul Scherrer Institute, Switzerland	
E. Lehmann, A. Kaestner, T. Panzner, P. Trtik, M. Mangano	
Istituto dei Sistemi Complessi, Sesto Fiorentino (FI), Italy	European Spallation Source Scandinavia
F. Grazzi	M. Strobl, R. Woracek
ANSTO A Sokolova A Paradowska V Luzin E Salvemini	Technical University of Denmark
CONICET and Institute Balsaire, Centre Atomice Bariloche Ar	anting
I Santistehan	gentina
Spallation Neutron Source, Oak Ridge National Laboratory, USA	A Open University, Coventry University, UK
H. Z. Bilheux, L.J. Santodonato	M. Fitzpatrick, R. Ramadhan
Technische Universität München, Forschungs-Neutronenquelle I B. Schillinger, M. Lerche	FRM-II, Germany
Department of Geology and Environmental Earth Science, Mian John Rakovan	ii University
Welding Science, Cranfield University	General Electric Global Research
Supriyo Ganguly	Yan Gao
University of Newcastle, Latrobe University, Australia C. Wensrich, E. Kisi. H. Kirkwood	and many others!
	apologies for missed names
neutron imaging workshop, Garching, Oct. 2019	

MCP electron amplifier for UV/neutron detection

MCP/Timepix detector for neutron imaging: principle of operation

A.S. Tremsin, et al., NIM A 787 (2015) 20-25.

Time resolved imaging and imaging of cyclic dynamic processes

Quantification of water dynamics

Toy steam engine cylinder @ 10 Hz

Quantification of water dynamics

Dry cylinder operation (1 ms time slice)

Quantification of water dynamics

Fast neutron imaging workshop, Garching, Oct. 2019

Quantification of water in cylinder

Water quantification as a function of time within the cycle

JINST 10 (2015) P07008 Fast neutron imaging workshop, Garching, Oct. 2019

Dynamic imaging of magnetic fields and domain walls

All phases are measured simultaneously (unlike in stroboscopic imaging)

A.S. Tremsin, et al., New Journal of Phys. **17** (2015) 043047 Fast neutron imaging workshop, Garching, Oct. 2019

R.P. Harti, et al, Scientific Reports 8 (2018) 15754

High spatial resolution through event centroiding

Single neutron detection: Charge accumulated in each pixel

Each pixel measures charge accumulated in a frame (Time Over Threshold method)

Only one event per pixel is allowed in a frame

Single frames: event centroiding

Each pixel measures charge accumulated in a frame (Time Over Threshold method)

Only one event per pixel is allowed in a frame

Event centroiding for photons

High resolution imaging with up to MCP pore size is possible

Nucl, Instr. Meth. A 787 (2015) pp. 20-25.

Fast neutron imaging workshop, Garching, Oct. 2019

High spatial resolution: event centroiding

Neutron radiography. Centroiding mode.

Fast neu

Energy-resolved neutron imaging: time of flight

Plastic MCPs for fast neutron detectoin

Fast neutron imaging workshop, Garching, Oct. 2019

Plastic microchannel plates for fast neutron detection

100,000

10,000

1,000

100

10

0

200

400

600

Bias, V

- Hydrogen-rich PMMA microchannel structure
- Graded Temperature ALD deposition
 - Active films deposition at 140C
- Neutron-proton recoil reaction within plastic at better than 1% efficiency
- Proton initiated secondary electron cascade
- Output pulse $10^3 10^6$ electrons
- Standard readout electronics
- Technology is scalable to large format

1000

800

2.0E+08

- 0.0E+00

1200

MCP manufacturing process

ALD Cycle for Al₂O₃

ALD Thin Film Materials

- Phosphide/Arsenide
 Sulphide/Selenide/Telluride

Dopant

Mixed Oxide

Graphic Courtesy J. Elam Argonne National Labs

ALD MCP Technology

MCP performance tied to glass composition

ALD:

- Device optimization is de-coupled from substrate.
- Semiconductor processes & process control.
- Materials engineering at the nanoscale
- Functional films composed of abundant, non-toxic materials.
- Advantages:
 - High conformality (>500:1)
 - Scalable to large areas
 - Digital thickness control
 - Pure films
 - Control over film composition
 - Low deposition temperatures (50-300°C)

- Thin film growth that relies on selflimiting surface reactions
- Gas A reacts with a surface
 - excess precursor & reaction byproduct removed.
- Gas B is introduced to the evacuated chamber – reacts with surface bound A
 - excess precursor & reaction byproduct removed.
- Repetition of A B pulse sequence to build film layer-by-layer

Plastic MCP: ALD resistive and conductive films

Pores ~50 μm , center to center spacing ~70 μm , L/D ratio ~20:1 and ~27:1

Resistive and conductive films were developed for compatibility with low temperature ALD deposition process.

Arradiance, Inc.

$$\mathsf{P}_{\text{detection}} = \mathsf{P}_1 * \mathsf{P}_2 * \mathsf{P}_3$$

- P_1 interaction of neutron within the MCP glass
- P_2 reaction product(s) escape into MCP pore
- P_3 electron avalanche is formed (MCP ~1)

A. S. Tremsin, et al., IEEE Trans. Nucl. Sci. 52 pp.1739-1744 (2005). A.S. Tremsin, et al., Nucl. Instrum. Meth. A 539, pp. 278-311 (2005).

Plastic MCP: probability of proton recoil P1

PMMA $(C_5 - O_2 - H_8)_n$

N of monomers per cm³ 7.16+21 N of H atoms per cm³ 5.73E+22 N of C atoms per cm³ 3.58E+22N of O atoms per cm³ 1.43E+22

 $P = [1 - exp(-N_i \sigma_i L)](1-A)$

Plastic MCP: probability of proton recoil P1

 $PMMA (C_5 \text{-} O_2 \text{-} H_8)_n$ 50 µm circular pores, 20 µm walls, 1.19 g/cm³

Recoil proton escape probability P₂

 $P_1 \times P_2$

100 um pores and 100 um walls, 10 mm thick

Detector Hardware Experimental Setup

- 2 & 5 mm PMMA MCP, ~50 µm pores, 20 µm walls, 5° bias angle
- installed above a chevron stack of 50:1 L/D MCPs
- Phosphor screen readout
- Canberra preamp and post amplifier

Arradiance, Inc.

D-T Source (Thermo 320) Experimental Setup

Technical Specifications	
Neutron Yield	1.0E+08 n/s
Neutron Energy	14 MeV
Typical Lifetime	1,200 hours @ 1x108 n/s
Pulse Rate	250 Hz to 20 kHz, continuous
Duty Factor	5% to 100%
Minimum Pulse Width	5 µsec
Pulse Rise Time	Less than 1.5 usec
Pulse Fall Time	Less than 1.5 µsec
Maximum Accelerator Voltage	.95 KV
Beam Current	60 µamps

Arradiance, Inc.

Coincidence gamma rejection through TOF

Coincidence measurements with Cf-252

Coincidence measurements for time of neutron flight

Neutrons from Cf-252

20 cm separation

Some results on plastic MCP have been published

Timing resolution of fast neutron and gamma counting with plastic microchannel plates

D.R. Beaulieu^a, D. Gorelikov^a, H. Klotzsch^a, J. Legere^b, J. Ryan^b, P. de Rouffignac^a, K. Saadatmand^a, K. Stenton^a, N. Sullivan^a, A.S. Tremsin^{a,*}

^a Arradiance, Inc., 142 North Road, Sudbury, MA 01776, USA
^b Space Science Center, 330 Morse Hall, 8 College Road, University of New Hampshire, Durham, NH 03824, USA

Fig. 4. Phosphor screen images of events detected with Co-60 gamma source (3)–(C) and CT-252 gamma and neutron source (3)–(C). The individual events are seen in images (3, 3)–(3) ms integration time and (b)(c)–3 ms integration time and (b)(c)–3 ms integration time (a) separad, which can be used for event centroloiding. Figh spatial resolution in "mage intensifier" mode will require short distance between the phosphor and MCPs to be used for event scaroulated avec 62 s and has ~11000 detected gamma photons from Co-605 source, while image (f) was and fast neutrois).

Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

Plastic microchannel plates with nano-engineered films

D.R. Beaulieu, D. Gorelikov, H. Klotzsch, P. de Rouffignac, K. Saadatmand, K. Stenton, N. Sullivan, A.S. Tremsin*

Arradiance, Inc., 142 North Road, Sudbury, MA 01776, USA

Fig. 4 (a) Photograph of the phosphor screen with detector under UV illumination. No noise spots or artifacts from PMMA MCP are observed. The defects on the image are due to the phosphor internal features. (b) Schematic diagram of the pulse counting detector configuration (not to scale). 1—UV light source with an aperture, 2—PMMA MCP, 3—standard lead glass MCP (or a chevron stack) used for post-amplification of electron signal produced by the PMMA MCP and 4—phosphor screen/charge collecting anode.

Fast neutron imaging workshop, Garching, Oct. 2019

Thank you for your attention!

This work was done within the Medipix collaboration.

We would like to thank Medipix collaboration for the readout electronics and data acquisition software (Advacam, Prague and Espoo, NIKHEF, Amsterdam and IEAP, Prague).

This work was supported in part by U.S. agencies: NASA, DOE, NSF, NIH and NNSA.