Supporting Information

Secondary Alcohols as Rechargeable Electrofuels: Electrooxidation of Isopropyl Alcohol at Pt Electrodes

Fabian Waidhas¹, Sandra Haschke², Peyman Khanipour³, Lukas Fromm⁴, Andreas Görling⁴, Julien Bachmann^{2,5}, Ioannis Katsounaros³, Karl J.J. Mayrhofer^{3,6}, Olaf Brummel^{1*}, Jörg Libuda¹

 ¹ Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, D-91058 Erlangen, Germany
² Lehrstuhl für Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstrasse 4, D-91058 Erlangen, Germany
³ Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, 91058, Germany
⁴ Lehrstuhl für Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
⁵ Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Saint Petersburg, Petergof 198504, Russia
⁶ Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany

*corresponding author: Olaf Brummel; olaf.brummel@fau.de

Figure S1: Nanotubular platinum model catalysts; (a) schematic representation of the preparation procedure (b) EDX spectrum, (c) XRD analysis and SEM images (d) before preparation and (e) after EC measurements.

Figure S2: Hydrogen region of the cyclic voltammograms of Pt(111) in the absence and the presence of IPA (0.2 M) shown in **Figure 1**; CVs were recorded in 0.1 M HClO₄ with and scan rate of 50 mV s⁻¹.

Figure S3: Infrared spectra of IPA and acetone in the spectral region from 700 to 3200 cm⁻¹. Simulated spectra from PBE/def2-TZVP level of theory (black) and experimental (red) IR spectra (ATR) of IPA and acetone.

Figure S4: Visualization of the different vibrational modes and the corresponding band positions of the calculated spectra of IPA and acetone depicted in **Figure S3**. The vibrational modes are visualized using the program QVibeplot.¹

Figure S5: Cyclic voltammetry of IPA oxidation on polycrystalline Pt monitored by EC-RTMS using an SFC coupled with DART for upper potential limits of 1.0 and 1.5 V_{RHE} ; (a) cyclic voltammogram and (b) the corresponding DART signal intensity for mass m/z = 59.1 ± 0.1 using a solution of 0.2 M IPA in 0.1 M HClO₄ with a flow rate of 0.5 mL⁻min⁻¹ and a scan rate of 10 mV·s⁻¹.

Reference

1. Laurin, M., QVibeplot: A Program To Visualize Molecular Vibrations in Two Dimensions. *Journal of Chemical Education* **2013**, *90*, 944-946.