Developing a Robust Recombination Contact to Realize Monolithic Perovskite Tandems With Industrially Common p-Type Silicon Solar Cells

Abstract—Although two-terminal perovskite-silicon tandem solar cells have rapidly increased in efficiency, they have only been demonstrated with n-type silicon, which currently constitutes less than 5% of the global photovoltaics market. In this paper, we realize the first two-terminal perovskite tandem with p-type silicon by developing a recombination contact that enables voltage addition without damaging either subcell. We find that silicon interband recombination contacts are limited by a SiOx charge-extraction barrier, which forms during oxidative top-cell fabrication. A sputtered 30-nm indium tin oxide layer is found to protect the silicon cell surface from oxidation, while forming a recombination contact with the p-type nickel oxide hole transport layer for the perovskite top cell. Using this recombination contact we achieve voltage addition between the perovskite top cell and aluminum back-surface field p-type silicon bottom cell. We also find that minimizing moisture on the nickel oxide surface is important for achieving a stable open-circuit voltage under illumination. The recombination contact developed herein could play an important role in near-future developments.

Index Terms—Aluminum back-surface field (Al-BSF), nickel oxide, perovskite-silicon tandem solar cells, p-type silicon cell, recombination contact, stability.

I. INTRODUCTION

SINGLE junction photovoltaics (PVs) based on organic–inorganic hybrid lead halide perovskites have rapidly increased in efficiency from 3.8% in 2009 to a certified 22.1% in 2016 [1], [2]. While methylammonium lead iodide (MAPbI3) is unstable in humid air [3], recent efforts have identified perovskite compositions that are more environmentally stable [4], and device architectures that lead to less degradation [5], [6]. With a high absorption coefficient, long diffusion length, and a bandgap that is tunable from 1.55 to 2.3 eV through the halide content [7], [8], these new perovskite compositions have emerged as promising top-cell absorbers for tandems with silicon [9].

Crystalline silicon solar cells currently dominate the PVs market, accounting for over 90% of global production capacity [10]. To achieve and maintain cost-competitiveness with incumbent electric generation sources, however, PV system costs must continue to decline [11], [12]. Increasing the efficiency of silicon solar cells through tandems with perovskite top cells by low-capital-intensity solution processing is an appealing option [13]. In these tandems, the wider bandgap perovskite top cell absorbs the visible light, converting energy that would otherwise be lost through thermalization in the 1.1 eV bandgap silicon bottom cell. The addition of a wide-bandgap top cell increases the radiative efficiency limit from 32.9% to 45% [14].

The four-terminal and two-terminal configurations are two of the most commonly used architectures for tandems. The four-terminal approach involves mechanically stacking individually fabricated single-junction devices [9], [15]. Such four-terminal tandems were realized in 2014 with an efficiency of 17% [16], increasing to 26% in 2017 [17].
By contrast, the two-terminal (or monolithic) tandem architecture has the perovskite top cell directly grown on the silicon bottom cell [5]. Monolithic tandems can achieve lower manufacturing costs, are simpler to incorporate into modules, and can reach higher efficiencies than four-terminal tandems due to lower optical and resistance losses by avoiding the need for additional transparent electrodes and metal grids [9], [18], [19]. The two-terminal architecture is, however, more challenging to implement, requiring current matching and the compatibility of the processing of the top cell with the silicon bottom cell [18]. The first two-terminal perovskite-silicon tandem was reported by Mailoa et al. in 2015, demonstrating a stabilized efficiency of 13.7% with an n-type silicon bottom cell [13]. This device used a silicon interband recombination contact, comprised of p++ and n++ silicon. Albrecht et al. then Werner et al. reported improved monolithic tandems on n-type silicon heterojunction cells with efficiencies of 18% and 21.2%, respectively [20], [21]. We subsequently improved the efficiency to a certified 23.6% with 1000 h stability under dry and damp environments using a protective atomic-layer-deposited (ALD) tin oxide and sputtered indium tin oxide (ITO) top electrode [5].

Although the development of monolithic tandems has focused on n-type silicon bottom cells, it is technologically and commercially important to develop architectures that enable efficient integration of perovskites with the more industrially common p-type silicon cells. p-type silicon accounts for over 85% of the current global PVs market [10]. Another advantage of p-type silicon cells is that there is a wider temperature processing window for the charge transport layers deposited on top (up to 500 °C [13]), whereas silicon heterojunction cells can only be processed below 250 °C to avoid damaging the amorphous passivation layers. Realizing monolithic tandems with p-type silicon requires developing a recombination contact with inverted polarity compared with the previous work on n-type silicon. The recombination contact needs to be both optically transparent to near-infrared light and sufficiently robust to protect the silicon bottom cell during processing of the top cell.

In this paper, we systematically developed each component of the recombination contact to realize monolithic perovskite tandems on p-type aluminum back-surface field (Al-BSF) silicon bottom cells made with industry-standard process flows. We investigated silicon interband recombination contacts, but found them to be susceptible to the formation of a current-limiting SiOx barrier during top-cell synthesis. Using X-ray photoemission spectroscopy (XPS), we found the SiOx to form not only during UV-ozone or oxygen-plasma treatment, but also during the deposition and annealing of the NiOx layer on top. We overcame this limitation by replacing the silicon interband recombination contact with ITO sputtered without oxygen working gas, and forming a recombination contact with NiOx. As a result, we realized a 1 cm² area tandem that achieved voltage addition. We also found that minimizing moisture accumulation on the surface of NiOx enabled the open-circuit voltage (Voc) to be stable under illumination. The architecture developed here could play an important role in the commercial integration of low-capital-intensity perovskites with the dominant material in the PVs industry today.

II. METHODS

A. Fabrication of Single-Junction Perovskite Devices

ITO/glass substrates (Thin-Film Devices) were cleaned in acetone and isopropanol by ultrasonication for 15 min successively. The substrates were blown dry with nitrogen gas and oxygen-plasma-cleaned for 10 min, following a previous report [3]. PEDOT:PSS (Ossila) was deposited onto ITO/glass by spin-casting at 4000 r/min for 30 s, followed by annealing at 130 °C in air for 20 min. NiOx was deposited by preparing a solution of 1 mol L⁻¹ nickel nitrate hexahydrate (99.999%, Sigma-Aldrich) and ethylenediamine (≥99%, Sigma-Aldrich) in ethylene glycol (99.8%, Sigma-Aldrich), which was filtered with a 0.2 μm pore PTFE filter. The solution was spread over the substrate and spun at 2000 r/min for 90 s. These films were annealed at 100 °C for 30 min, followed by 300 °C for 1 h in air or inside a dry box with a relative humidity <10%. The NiOx was oxygen plasma treated for 5 min. The methylammonium lead iodide (MAPbI3) precursor solution was prepared by dissolving 166.7 mg lead acetate trihydrate (99.999%, Sigma-Aldrich) and 212 mg methylammonium iodide (Dyesol) in 0.5 mL N, N-dimethylformamide (99.8%, Sigma-Aldrich). The solution was stirred for 15 min at 50 °C. The perovskite was deposited inside the dry box. The perovskite solution was pre-heated to 50 °C and substrates to 85 °C before dynamically depositing 35 μL solution onto the 12 × 12 mm² substrate spinning at 2200 r/min. The substrate was spun for a total of 90 s before immediately annealing the film at 85 °C for 20 min. The perovskite was stored in the dry box for 4 h before transferring to a nitrogen-filled glovebox. 35 mg mL⁻¹ PC60BM (nano-C) dissolved in chlorobenzene (99.8%, Sigma-Aldrich) was deposited dynamically onto the perovskite spinning at 1400 r/min for 40 s, then 3000 r/min for 10 s. 20 nm Ca and 80 nm Al were thermally evaporated through a shadow mask at 10⁻⁶ Torr pressure to create an active area of 5.44 mm² for each device.

B. Fabrication of Silicon Cells

For Al-BSF cells, p++ silicon cells (Silicon Quest) were rear-textured from the wafer diamond sawing process and had an Au rear-electrode evaporated. The rear-textured p-type silicon bottom cells were prepared by diffusing a doped n⁺ emitter into the front surface of the silicon using standard POCl₃ diffusion at 865 °C for 10 min. The back surface of the cell was subsequently metallized by sputtering 1 μm Al. The sample was annealed at 900 °C for 30 s to achieve back-surface field passivation. The silicon interband recombination contact was made by depositing a 2–3 nm thick layer of intrinsic amorphous silicon, followed by 30 nm of heavily doped p-type hydrogenated amorphous silicon by plasma-enhanced chemical vapor deposition (PECVD) at 250 °C on the front surface of the silicon wafer. The samples subsequently underwent a rapid thermal anneal at 680 °C for 900 s to recrystallize the amorphous silicon. UV-ozone treatment was performed using a UVOCs Inc. system for 5 min. Oxygen plasma treatment was performed following a previous report [3]. Silicon single-junction devices were made by depositing 70 nm SiNₓ onto the silicon bottom cells by PECVD, followed by a metal grid comprised of 20 nm Ti, 20 nm Pd, and 250 nm Ag using e-beam evaporation. The devices were cleaned in solvents,
annealed at 400 °C for 300 s to improve metal adhesion, then laser scribed to form 1 × 1 cm² devices.

C. Fabrication of Tandems With 1 cm² Active Area

The p-type silicon cells described in Section II-B were cut to 14 × 14 mm² substrates, and mesa etched so that the emitter covered an 11 × 11 mm² area. The surface SiOₓ layer on the silicon cells was removed by etching with 10% HF. About 30 nm ITO was deposited by RF magnetron sputtering over a 12 × 12 mm² area at a rate of 0.6–0.7 Å s⁻¹ with an Ar partial pressure of 6 mTorr and RF power of 60 W (1.3 W cm⁻²). An ITO target (99.99% purity, 90% In₂O₃, 10% SnO₂ by mass, Plasmaterials) was used. No substrate heating was employed. NiOₓ was synthesized in a similar way as Section II-A, but spun at 5000 r/min for 45 s to give an 8 nm thick film. C$_{0.17}$FA$_{0.83}$Pb(Br$_{0.17}$I$_{0.83}$)$_{3}$ was deposited according to a previously reported method [5]. The precursor solution contained CsI (99.99%, Sigma-Aldrich), FAI (Dyesol), PbI₂ (96%, Sigma-Aldrich), and the solvents N, N-diethylformamide (99.8%, Sigma Aldrich) and dimethyl sulfoxide (≥99.9%, Sigma-Aldrich). The solution was spun in a dry air box at 1000 r/min for 11 s, followed by 6000 r/min for 30 s, with chlorobenzene dropped 5 s from the end. The films were annealed at 50 °C for 10 s, then 100 °C for 30 min. 1 nm LiF and 20 nm C$_{160}$ (>99.9%, MER Corporation) were thermally evaporated, followed by ALD of 4 nm SnO₂ and 2 nm zinc tin oxide at 100 °C in an Arradiance GEMStar-6 system. The tin precursor was tetrakis(dimethylamido)tin (TDMASn), zinc precursor diethylzinc (DEZ), and oxidant vapors of deionized water. Each SnO₂ cycle comprised of 1.5 s TDMASn pulse, 5 s purging with 90 mL min⁻¹ N₂, 1 s H₂O pulse, 5 s purging. The TDMASn precursor was heated to 60 °C. Zinc tin oxide was grown using a supercycle comprised of three cycles of SnO₂ and three cycles of Zno. Each ZnO cycle had 100 ms DEZ pulse, 5 s purge, 1 s H₂O pulse, 5 s purge. ITO and LiF (as an antireflection coating) were sputtered and evaporated respectively according to a previous report [5].

D. Characterization

Transmittance measurements were performed inside an integrating sphere using a PerkinElmer Lambda 950 UV-VIS-NIR spectrophotometer. The transmittance of the glass substrate was also measured and divided from the measured transmittance of the thin film on glass, to account for the reflectance and absorbance of the glass substrate. Solar simulations were measured under 1 sun AM 1.5G illumination, calibrated with a silicon reference cell using a Newport solar simulator inside a nitrogen-filled glovebox for the single-junction devices, Newlent Engineering. A Keithley 2400 source meter was used to sweep from –30 to 30 mV and measure the current. Using the resistance from the Ohmic current–voltage curve measured and the standard $\pi/\ln(2)$ correction factor for in-line probes, the sheet resistance was calculated.
III. RESULTS AND DISCUSSION

A. Challenges of Silicon Interband Recombination Contacts for Monolithic Tandems with p-Type Silicon

We first investigated the use of a silicon interband recombination contact with opposite polarity to that previously used for n-type silicon. This recombination contact (comprised of n++ and p++ silicon) is advantageous because it has minimal optical absorption [13]. However, our first attempts resulted in extraction barriers (see Fig. S1, Supporting Information). To identify the root cause, we characterized the silicon bottom cell by XPS and found that a thicker layer of insulating SiOₓ formed on the silicon surface [see Fig. 1(a)] after the oxygen-plasma treatment needed for sufficient wetting of the solution-processed top cell. We investigated whether this effect could be overcome by using 5 min UV-ozone treatment instead to make the silicon hydrophilic. We found that while the SiOₓ peak was smaller [see Fig. 1(a)], the tandems still had extraction barriers (see Fig. S1, Supporting Information).

For our solution-processed top cell, we considered using PEDOT:PSS or nickel oxide (NiOₓ) as the hole transport layer. Both were effective hole acceptors and did not change the perovskite phase (see Section S2, Supporting Information), but our 20 nm NiOₓ films were more suitable because they had higher near-infrared transmittance (>95%) and gave higher open-circuit voltage in our test single-junction MAPbI₃ perovskite top cells (1.07 ± 0.02 V cf., 0.906 ± 0.004 V), leading to higher efficiencies (see Table S2, Supporting Information). However, our solution-processed NiOₓ layer required crystallization for 1 h in air at 300 °C. To investigate whether this led to further damage of our silicon interband recombination contact, we performed XPS depth-profiling through the NiOₓ film. In Fig. 1(b), it can be seen that the Si 2p spectra were initially almost featureless because most of the photoelectrons were collected from the NiOₓ surface. During sputtering, the Ni 2p spectra changed from Ni 2+ to elemental Ni doublet as the Ni–O bonds were broken, while the Si 2p peaks became more intense until only the peak corresponding to elemental silicon at 99 eV binding energy was observed [see Fig. 1(b)]. These spectra after 380 s sputtering correspond to when both the NiOₓ and SiOₓ layers have been removed, with some Ni implanted into silicon during the sputtering process. We were therefore able to obtain the XPS spectrum of the SiOₓ layer under NiOₓ in the middle of the depth-profile. This SiOₓ peak after NiOₓ annealing is larger than that for silicon after UV-ozone treatment [see Fig. 1(a)] showing that a thicker SiOₓ formed after crystallizing our NiOₓ layer. This may be due to either oxygen diffusing through the 20 nm NiOₓ layer or an increased rate of silicon oxidation when Si–Ni bonds form, as has been observed in nickel silicides [22]. These results suggest that silicon interband layers are damaged during the processing of our solution-synthesized top cell and not suitable as recombination contacts.

B. Overcoming Bottom Cell Oxidation Using an ITO/NiOₓ Recombination Contact

We investigated whether depositing ITO on silicon before depositing NiOₓ could protect the bottom cell from oxidation during processing. We believed it was possible to deposit a conductive ITO layer on silicon without oxidizing it because this is a part of the standard process for fabricating silicon heterojunction solar cells [18]. Degenerate n-type doping in ITO is primarily caused by oxygen vacancies, supplemented by substitutional tin doping [23], [24]. As a result, ITO films sputtered without oxygen working gas can achieve low resistivity and high transparency, although a low concentration of O₂ may help maintain film stoichiometry and high optical transmission [23], [25].

To determine whether sputtering ITO led to silicon oxidation, we compared single-junction perovskite devices on ITO-coated p++ silicon, and on standard ITO/glass [device structures in Fig. 2(a)]. Both were illuminated through a Ca:Ag transparent top electrode to enable a fair comparison between the devices on opaque p++ silicon and on transparent glass substrates. Ca:Ag was chosen because it could be evaporated at a low rate of 0.4 Å s⁻¹, preventing damage to the PC₆0BM layer. Both types of devices were expected to operate similarly if no oxidation occurred because the p++ silicon is degenerate like ITO. The p++ silicon was contacted from the rear gold electrode. If oxidation occurred on the p++-silicon-based device, we would have expected an extraction barrier. This extraction barrier was absent and the two types of devices had very similar performance (see Fig. S2, Supporting Information), suggesting that the ITO can protect the silicon from oxidation during top-cell processing.

C. Controlling the Open-Circuit Voltage Stability of the Perovskite Top Cell

We found that maintaining a stable open-circuit voltage under illumination required careful control of the surface properties of the NiOₓ layer. When NiOₓ was annealed and left in air for 2.5 h, the open-circuit voltage decreased by 25 mV after 30 min illumination under 1 sun [see Fig. S6(a), Supporting Information, olive points]. In contrast, when NiOₓ was annealed inside a dry box with <10% relative humidity, the open-circuit voltage after 30 min was almost the same as the initial value.
To understand these effects, we investigated the following three hypotheses:

1) perovskite damage due to the formation of surface hydroxyl groups when NiO\(_x\) is kept in humid air;
2) perovskite deprotonation over time due to the high isoelectric point of NiO\(_x\);
3) perovskite change due to moisture accumulation at the interface between NiO\(_x\) and MAPbI\(_3\).

As detailed in Section S2 of the Supporting Information, we found the third hypothesis to be the most likely. Fourier transform infrared spectroscopy measurements showed that moisture accumulated on the NiO\(_x\) over time in ambient air. When the NiO\(_x\) was taken into the dry box immediately after annealing, there was no decrease in the open-circuit voltage [see Fig. S6(a), Supporting Information, red points]. Similarly, when NiO\(_x\) left in air for 2.5 h was subsequently heated to drive off moisture, there was also no decrease in open-circuit voltage [see Fig. S6(a), Supporting Information, open circles].

The open-circuit voltage of our MAPbI\(_3\) devices may degrade when moisture is present due to the reversible formation of a layered hydrated phase, which can lead to nonradiative recombination [26]. The high potential under open-circuit conditions may favor the formation of hydrated MAPbI\(_3\) if a greater quantity of moisture accumulates on the surface of the HTL. Our results (discussed in detail in Section S2, Supporting Information) indicate that while a NiO\(_x\) HTL gives a higher open-circuit voltage than PEDOT:PSS, to maintain a stable open-circuit voltage, it is important to minimize the exposure of the NiO\(_x\) surface to moisture after annealing. This information is important not only for the present work on tandems, but also for achieving greater reproducibility in perovskite devices using NiO\(_x\). Using these processing conditions, we achieved perovskite devices on p+ silicon with an open-circuit voltage that was stable under constant 1 sun illumination for the duration of the 30 min experiment [see Fig. 2(b)].

D. 1 cm\(^2\) Active Area Monolithic Perovskite Tandems With p-type Silicon Solar Cells

To determine whether our ITO/NiO\(_x\) recombination contact can enable voltage addition, we fabricated monolithic tandems with p-type Al-BSF silicon cells. The tandem device structure is shown in Fig. 3(a), and the band diagram of the ITO/NiO\(_x\) recombination contact is given in Fig. 3(b). To minimize losses due to dark current from the silicon bottom cell, the perovskite top-cell active area is required to match that of the silicon subcell (1 cm\(^2\)). We therefore used a perovskite top cell that was stable under constant 1 sun illumination for the duration of the 30 min experiment [see Fig. 2(b)].

The tandem results demonstrate the success of the recombination contact and processing strategies we have developed for p-type silicon tandems.

TABLE I

<table>
<thead>
<tr>
<th>Cell type</th>
<th>FF (%)</th>
<th>PCE (%)</th>
<th>J(_oc) (mA cm(^{-2})) From J–V</th>
<th>From EQE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perovskite top cell</td>
<td>98.9</td>
<td>14.5</td>
<td>18.7</td>
<td>17.9</td>
</tr>
<tr>
<td>Silicon bottom cell (unfiltered)</td>
<td>0.58</td>
<td>13.3</td>
<td>29.3</td>
<td>33.0</td>
</tr>
<tr>
<td>Tandem</td>
<td>1.43</td>
<td>16.2</td>
<td>15.3</td>
<td>12.4</td>
</tr>
</tbody>
</table>

The area of the tandem was 1 cm\(^2\) and measured with a matching aperture area.

Fig. 3. Monolithic tandems with an active area of 1 cm\(^2\) using ITO/NiO\(_x\) recombination contacts measured under 1 sun AM 1.5G illumination. (a) Device structure of tandems with Al-BSF p-type silicon bottom cells. (b) Band structure of the ITO/NiO\(_x\) recombination contact on a p-type silicon cell. (c) Cross-sectional scanning electron microscopy image of a tandem on silicon. We note that the LiF/C\(_60\)/SnO\(_2\)/ZTO layers are between the perovskite and ITO, and are too thin to resolve. (d) J–V curve swept at 100 mV s\(^{-1}\) in both the forward (solid line) and reverse (dashed line) directions for the tandem device. The stabilized short-circuit current density, maximum power point, and open-circuit voltage are shown as black diamonds. The J–V curve for a semi-transparent C\(_60\)/FA\(_0.83\)Pb(Br\(_0.17\)I\(_{0.83}\))\(_3\) perovskite cell and unfiltered silicon single-junction device made from the same p-type silicon wafer as the bottom cell are also shown. (e) Power and current density at the maximum power point, and open-circuit voltage versus time (inset) over a period of 30 min. (f) Tandem 1–R (reflectance) and external quantum efficiency of the top and bottom subcells.
To identify routes to build off our work and achieve higher efficiencies, we analyzed the losses in our devices. From light-biased external quantum efficiency (EQE) measurements of each subcell, we found that the integrated J_{SC} of the silicon bottom cell (12.4 mA cm$^{-2}$) was lower than that of the perovskite top cell and also below the J_{SC} of the tandem measured from J–V curves (15.3 mA cm$^{-2}$). Previous analysis of tandem solar cells has shown that if the current-limiting sub-cell is shunted, then the tandem current density can transition to that of the noncurrent-limiting subcell [27]. Shunting in the silicon bottom cell may also contribute to the 0.13 V difference between the sum of the V_{OC} of each subcell and the V_{OC} of the tandem. The performance of our tandems is also limited by parasitic losses, particularly in the near-infrared spectral range, in which the EQE of the silicon subcell is significantly below 1-R for the tandem [see Fig. 3(f)]. To understand the factors contributing to the large near-infrared parasitic loss, we calculated the EQE of the silicon bottom cell from the measured EQE of the single-junction device and transmittance of the perovskite top cell. The calculated EQE very closely matched the measured EQE, with a similar integrated J_{SC} (see Fig. S8, Supporting Information). We then set the sub-bandgap transmittance of the perovskite to 100% and found that the integrated J_{SC} did not reach that of the perovskite top cell. This shows that the near-infrared response of the silicon cell itself would need to be improved, such as through improved surface passivation or through the use of rear-reflectors covering the textured back surface [5].

IV. CONCLUSION

In summary, we have successfully developed a recombination contact that enables voltage addition between perovskite and p-type silicon subcells in a two-terminal tandem. This was achieved by developing a recombination contact robust to oxidizing top-cell processing, using a sputtered ITO layer to protect the silicon bottom cell. We paired the ITO with an NiO$_x$ hole transport layer, which gave high open-circuit voltages and >95% transmittance for near-infrared light. Control of the moisture content on the surface of NiO$_x$ led to stable open-circuit voltages and stable voltage addition in tandem devices. The advances in tandem architecture and processing developed here could pave the way for the commercialization of perovskites with industry-standard p-type silicon cells as efficient monolithic tandems.

ACKNOWLEDGMENT

The authors would like to acknowledge valuable discussions with Y. Song for perovskite device synthesis, Z. Yu at Arizona State University for rear-texturing of the p-type silicon wafers, T. McClure for assistance with the FTIR measurements, and Prof. S. F. Bent for support with ALD.

REFERENCES

Authors’ photographs and biographies not available at the time of publication.