Atomic scale manipulation of sublayer with functional TiO$_2$ nanofilm toward high-performance reverse osmosis membrane

Kiyoumars Zarshenas, Gaopeng Jiang, Jing Zhang, Mohd Altamash Jauhar, Zhongwei Chen

Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada

**ABSTRACT**

Recently, engineering the sublayer of polyamide thin film composite (PA-TFC) membrane by functional nanomaterials at nanoscale has been developed as an effective strategy to control interfacial polymerization reaction to fabricate high-performance reverse osmosis (RO) membrane. However, a reliable and practical manipulation technique is still needed to overcome the limitation of conventional sublayers. In this work, an approach of using atomic layer deposited (ALD) monomer-affinitive titanium dioxide (TiO$_2$) nanofilm to modify the sublayer of TFC was proposed to form a thin, smooth, and highly cross-linked PA selective top layer. The functional TiO$_2$ nanofilm increases the affinity between modified sublayer and amine monomer in favor of the efficient and subtle tuning of the adsorption and diffusion of amine monomer during the interfacial polymerization process. The obtained TFC membrane with optimal ALD TiO$_2$ coverage demonstrates well-improved RO performance in terms of high permeance of 1.8 L.m$^{-2}$.h$^{-1}$.bar$^{-1}$ and high salt rejection rate of 96.1% in a dead-end process. This work reveals that coating functional nanomaterials by ALD is a practical manipulation technique toward the controllable fabrication of promising TFC membrane and the optimization of sublayer materials.

1. Introduction

Water scarcity, a growing global concern, has led to a broad interest in membrane desalination technology [1]. Reverse osmosis (RO) is one of the dominant and efficient methods for generating pure water from saline water and other sources of wastewater [1–3]. The cutting edge choice for RO desalination is the polyamide thin film composite (PA-TFC) membranes [4,5]. In general, PA-TFC membranes are fabricated on porous polymeric support by the in-situ polycondensation of two reactive monomers, namely polyamine and polyacyl chloride, at the interface of two mutually immiscible solvents [6,7]. Among several synthesis factors of interfacial polymerization (IP) which impact the
separation performance and the physicochemical properties of TFC membranes, the sublayer properties play one of the most significant roles [8,9]. It includes structural properties (pore size distribution, porosity, pore density, and roughness) and chemical properties (hydrophilicity-hydrophobicity and the affinity/reactivity with amine or acyl chloride monomers) [10–17]. Conventional sublayers for TFC membrane consist of polymeric ultrafiltration (UF)/microfiltration (MF) membranes, which generally have poor surface wettability, rough surface, and low porosity [18]. An effective strategy to overcome these limitations is to modify a sublayer by functional nanomaterials to mediate the adsorption and diffusion rate of the amine monomer, the uniformity of both monomer distribution, the IP reaction rate [8,18,19]. The innate properties of functional nanomaterials such as hydrophilicity, antifoaming, affinity interactive, photocatalytic and others, equip the membrane with desirable properties [20].

Recently, several different manipulation methods have been proposed to modify the sublayer by functional nanomaterials. One strategy is to add inorganic and hydrophilic additive to the sublayer [21–23]. For instance, Wang et al. [21] fabricated the high performance RO membrane with thin and compact PA selective layer by incorporating tannic acid into the support layer, which enhanced the hydrophilicity of the support layer, and varied the absorption/diffusion behavior of the amine and the formation of the nascent film. However, the homogenous dispersion of additive in the sublayers is challenging [3]. Alternatively, the application of a specific interlayer [24–33] or sacrificing layer [34,35] was reported via vacuum filtration or interfacial self-assembly. For example, Livingston et al. [34] utilized a hydrophilic and uniform cadmium hydroxide nanostrand interlayer, which works as a container for the aqueous solution of the amine monomer, to regulate and optimize the formation of the skin layer with exceptional permeability. Applying sacrificing layer not only results in poor integrity between polyamide top layer and sublayer, but also makes the TFC membrane preparation procedure complicated due to additional removal steps of sacrificing layer after IP. Also, using these techniques would result in a relatively small area membrane. Therefore, the design of desirable sublayer by functional nanomaterials needs a reliable and practical manipulation strategy for controllable IP reaction at large area. Atomic layer deposition (ALD) as a versatile technology with outstanding properties [36] and feasible up-scaling [37–39] in membrane preparation [39–43], able to coat thin film of various high quality materials (inorganic metal oxides, metals, etc.) on substrates at the nanoscale with accurate thickness control, great uniform coverage and outstanding conformality. Here, in this study, for the first time, a novel strategy of atomic scale surface modification by functional nanomaterial was proposed to tune the physicochemical properties of the sublayer to design high-performance PA-TFC membrane. Atomic layer deposition (ALD) was used to coat an ultrathin layer of monomer-affinitive TiO₂ on porous polyethersulfone (PES) sublayer. Such a novel and rational approach adapts the following advantageous features: (i) ALD offers a great uniform and size control [44] coating of TiO₂ which controllably boosts uniformity and smoothness of the sublayer at nanoscale. (ii) The ALD coated TiO₂ layer with outstanding hydrophilicity, porosity [31,45], and stability [46–49], entirely covers the surface of the PES and firmly integrate with the PES layer [50]. Moreover, TiO₂ nanofilm’s functionality of tuning up the affinity of sublayer to the amine monomer further mediates absorption/diffusion behavior of the amine monomer in the interfacial polymerization process. (iii) The optimal ALD TiO₂ coverage leads to a thin, smooth, and highly cross-linked PA selective top layer. As a result, improved RO performance was obtained for the optimal TFC in a dead-end process in terms of high permeance of 1.8 L.m⁻².h⁻¹.bar⁻¹ and high salt rejection rate of 96.1%. Atomic scale manipulation of sublayer by ALD opens a new path toward controlling IP and preparing high-performance RO membranes.

2. Experimental

2.1. Materials

As reacting monomers, trimesoyl chloride (TMC) 98% and m-phenylenediamine (MPD) 99% were provided from Sigma-Aldrich. Anhydrous Hexane (≥99%) as the organic solvent, triethylamine (TEA), sodium dodecyl sulfate (SDS), dimethyl sulfoxide (DMSO), and camphorsulfonic acid (CSA) were used as the additives and supplied from Sigma-Aldrich. PES sublayer (average pore size of 0.1 μm) was purchased from Sterlitech Co. (WA, USA). The purchased materials and membranes were used without further modification.

2.2. Deposition of TiO₂ film on PES sublayer and ALD condition

An ultrathin film of TiO₂ was directly coated on the PES membrane at 95 °C in an ALD system (Thermal Gemstar 6XT, Arradiance, LLC, USA). Firstly, using deionized water (DDI water), PES membranes were washed then dried for 8 h at 70 °C. Afterwards, the membranes samples were placed in the holder of an ALD system, preheated at 95 °C for 30 min under vacuum (~ 30 mTorr). Each ALD cycle consisted of (1) insert a first precursor (a pulse of 700 mSec of titanium tetraisopropoxide (TTIP, Ti(OCH(CH₃)₂)₄) heated at 60 °C for a determined exposure time to allow the TTIP to react with the membrane surface), (2) Purging the chamber with the carrier gas (pure N₂) with a flow rate of 200 sccm to remove a remaining unreacted precursor or any by-products, (3) insert the water into the process as an oxygen reactant source (a pulse time of 22 mSec of H₂O₂) to form the TiO₂, and (4) again N₂ purging to remove excess water and by-products from the chamber. By repeating this cycle, TiO₂ film with the accurate thickness can be deposited on the sublayer. In this study, different ALD cycles (0, 10, 50, 100, 200) were performed on PES sublayer and the obtained modified sublayers for further IP were denoted as ALD-x-TiO₂@PES, where x means the number of ALD cycles.

2.3. Polyamide thin film composite (PA-TFC) membrane preparation

The PA-TFC membranes were synthesized by modified IP procedure (filtration method) via a vacuum filtration lab-scale setup [51]. In this filtration technique firstly, a 2 w/v% of MPD solution (25 mL) containing 0.1 w/v% SDS, 1 w/v% CSA, 1 w/v% TEA and 1 w/v% DMSO was poured onto the support layer. After 10 min of contact time, the MPD solution was filtered through the support layer by vacuum pressure (applied vacuum of 0.1 bar below atmosphere) to distribute MPD evenly on the surface of the support. Then, the excess solution was air-dried until no observed droplets. Support membrane was contacted with the organic phase (0.15 w/v% of TMC in hexane) (25 mL) which was removed by pouring out from the top of filtration flask, after 30 s. Then, the membrane surface was washed by n-hexane (100 mL) to eliminate unreacted monomers. The resulting membranes were cured at 60 °C for 4 min. Lastly, using DDI water, the fabricated TFC membranes were washed to remove the remaining reactants and then placed in lightproof DDI water container for performance evaluation and characterization. The obtained TFC membranes on different ALD-x-TiO₂@PES sublayers are denoted as PA-TFC-x, where x stands for the number of ALD cycles that was applied for TiO₂ nanoparticle coating.

2.4. Physicochemical characterization

The surface and cross-sectional morphologies of the membranes were detected by high resolution scanning electron microscopy (SEM, LEO FESEM 1530) with an accelerating voltage of 10 KV. For the cross-sectional analysis, membranes were broken in liquid nitrogen, and gold sputtering was used for all membrane samples before Field Emission Scanning electron microscopy (FE-SEM) detection. Energy dispersive X-ray spectroscopy (EDS) attached to a FE-SEM was applied to measure...
elemental composition specially the total amount of Ti atoms on the modified PES support membrane. The distribution of pores of the support layer was assessed by studying FE-SEM images of the modified PES membrane utilizing the ImageJ software. To study the topology of the membranes, Atomic Force Microscopy (AFM) (Bruker Innova AFM, USA) was utilized in tapping-mode. At least three times each membrane sample was scanned over a surface area of 10 μm by 10 μm, then the obtained AFM data was processed using Gwyddion analysis software, eliminating the noise and calculating the root mean square (Rq) and the average (Ra) roughness values.

The elemental compositions (C, O, and N) of the TFC PA membrane surfaces were studied via an X-ray photoelectron spectroscopy (Thermal Scientific K-Alpha XPS spectrometer). The cross-linking degree can be calculated by XPS spectra. The based on the chemical formula of fully linear (C₁₅H₁₀O₄N₂) and fully cross-linked (C₁₈H₁₂N₃O₃) polyamide, the theoretical O/N ratio can be shown by:

\[ \frac{O}{N} = \frac{3m + 4n}{3m + 2n} \]  
and cross-linking degree (%) of the whole PA selective layer (not only the incipient layer) can be calculated by:

\[ D = \frac{m}{m + n} \times 100 \]  

where n and m are the linear and cross-linked proportion of the PA selective layer, respectively, and XPS analysis results are used to determine the values of n and m [52, 53].

The surface hydrophilicity of support layer was evaluated through contact angle measurements by means of an optical instrument (OCA20, Data Physics, Germany) at room temperature. Using a motorized micro syringe, a preset 5 μL droplet of DI water was formed at the tip of a steel needle (20 gauge, 0.603 mm in diameter) placed on the surface of membrane and images of this drop were captured by a CCD camera. Image acquisition and determination of contact angle by automated drop shape analysis (ADSA) were then utilized to determine the contact angle. For each sample, the static contact angle was measured and the standard deviation was indicated by the error bar.

Membrane partition coefficient of MPD (Kₘ) was measured to determine the affinity of MPD to sublayer membrane [54]. Also, the solution uptake (SU) was used to determine the amount of solution taken up by the membrane sublayer [55]. The sublayer membranes were cut into the square pieces 1.5” in length. The pieces were then immersed in 50 mL of aqueous 2 wt% MPD solution for 10 min. Kₘ and SU can be calculated by:

\[ K_m = \frac{C_{\text{membrane}}}{C_{\text{MPD}}} = \frac{m_2 - m_0}{m_2 - m_0} \]  

\[ SU(\%) = \frac{m_1 - m_0}{m_0} \times 100 \]  

where m₁ depicts the sublayer weight saturated with MPD solution, m₀ and m₂ depicts the weight of dry sublayer before and after immersing in the MPD solution, respectively. Based on the Beer-Lambert law, the concentration of MPD in the water phase was measured at a certain time interval by an Ultraviolet–visible spectrophotometer (GENESYS 10S UV–Vis Thermo Fisher Scientific) using its absorbance at a wavelength of 292 nm, therefore, the MPD concentration (C_{\text{MPD}}) of the solution could be calculated after immersion of each sublayer.

2.5. Membrane performance test

Dead-end filtration system (Sterilitech HP4750 Stirred Cell) were used to investigate the rejection and pure water permeability of the prepared membranes. In order to pressurize the membrane cell, a nitrogen gas cylinder attached with the pressure regulator was linked to the top of container. The prepared TFC membrane was cut into the determined shape (effective area is 14.6 cm²) and placed in the membrane cell. The solution volume was 250 mL. The membranes were initially compacted at a constant temperature of 25 °C and a trans-membrane pressure of 20 bar with DI water for approximately 1 h. After the compaction, the initial water flux was measured for 10 min. Permeate was gathered via graduated cylinder for a period of time till steady condition. The pure water permeability (PWP) \((L\cdot m^{-2}\cdot h^{-1}\cdot bar^{-1})\) was calculated by:

\[ PWP = \frac{\Delta V}{A \cdot \Delta t \cdot \Delta P} \]  

where \( \Delta P \) (bar) is the applied trans-membrane pressure, \( A_m (m^2) \) is the effective area of the membrane testing cell, \( \Delta t(h) \) is the elapsed time period of sample collection, and \( \Delta V(L) \) is the volume of collected permeate. In the salt rejection test, a brackish water (2 g/L NaCl) was utilized as the feed solution. A bench conductivity meter (Hanna HI 8733) was utilized to measure the conductivity in the permeate \( (\sigma_p) \) and feed \( (\sigma_f) \). At least 40 ml solution was collected each time for the measurement. The membrane salt rejection calculation was performed by the conductivity ratio between the permeate solution \( (\sigma_p) \) to the feed solution \((\sigma_f)\) [56].

\[ R(\%) = \left(1 - \frac{\sigma_p}{\sigma_f}\right) \times 100 \]  

For each TFC membrane, at least three similar membranes were prepared with the same procedure and were analysed to calculate the average salt rejection, pure water permeability, and the standard deviation was indicated by the error bar.

3. Results and discussion

3.1. ALD coating and the properties of ALD-x-TiO₂@PES sublayers

As shown in Fig. 1, fabrication of TFC polyamide membranes consist of the following two steps: (a) Deposition of TiO₂ layer on the PES sublayer (b) Polyamide interfacial polymerization on the modified sublayer.

TiO₂ ALD nucleation growth on the PES that lacks reactive groups like hydroxyl, can be described by different mechanism [57-59] in comparison to the normal ALD growth. The PES sublayer, which has a porous surface, and TTIP are nonpolar. Therefore, TTIP is anticipated to have a decent solubility in the PES, and TTIP can adsorb to the surface of the PES and afterwards diffuse to the PES sublayer’s near-surface area. During the ALD reaction, the arriving H₂O will react effectively with TTIP molecules at or near the surface of the PES sublayer and TiO₂ clusters will be formed. After the nucleation of TiO₂, the reaction for the cycle of TiO₂ ALD can be defined as below [60, 61]:

\[
\begin{align*}
&\text{[Ti(OH)₅]}^+ + \text{[Ti(OC(OR)₂)₅]}^→ \\
&\text{[Ti₂(OC(OR)₂)₂(OH)₂]}^+ + 2\text{H₃O}⁺ & \text{(1st half reaction)} \\
&\text{[Ti(OH)₅]}^+ + \text{[Ti(OC(OR)₂)₅]}^→ \\
&\text{[Ti₂(OC(OR)₂)₂(OH)₂]}^+ + 2\text{H₃O}⁺ & \text{(2nd half reaction)} \\
&\text{[Ti(OH)₅]}^+ + \text{[Ti(OC(OR)₂)₅]}^→ \\
&\text{[Ti₂(OC(OR)₂)₂(OH)₂]}^+ + 2\text{H₃O}⁺ & \text{(Total reaction)}
\end{align*}
\]

By repeating the ALD cycle, an ultrathin layer of TiO₂ with the amorphous structure was obtained in the low temperature [62, 63]. Fig. 2K, which is proportional to the Ti EDS intensity [42], and Fig. S1, which is EDS mapping of Ti element, can confirm that the amount of TiO₂ on the PES support layer increases when the ALD cycle is increased. Also, it indicates that TiO₂ deposition successfully coated on
the PES support layer surface and pore walls.

Fig. 2 (A-J) shows the SEM and AFM images of ALD-x-TiO$_2$@PES membranes. The FE-SEM images of ALD-x-TiO$_2$@PES (Fig. 2(B-E)) indicate almost no changes in the surface morphology compared to the pristine membrane (Fig. 2A) which may be due to conformal and uniform deposition of modified layers. Based on the growth rate of TiO$_2$ reported by literature in the same experimental ALD condition [60], the growth rate of TiO$_2$ is reported around 0.04 nm per cycle. Therefore, for ALD 200-TiO$_2$@PES the nominal thickness of TiO$_2$ is considered around 8 nm and it can be estimated that the pore size reduction is around 5 to 10 nm. Thus, the effect of these range of ALD cycle on the morphology and pore size of the sublayer can be considered negligible. According to the AFM images in Fig. 2(G-J), the homogenous deposition of TiO$_2$ nanoparticles clearly reduced the surface roughness of sublayers, declining from 53 nm in average for pristine PES membrane to 37 nm in average for ALD-200-TiO$_2$@PES (Fig. 2J).

Such smooth surface of sublayer is favorable for the following IP of the PA top layer. The surface hydrophilicity was determined by the water contact angles (WCAs) measurement. WCA continuously decreased as the number of ALD cycles increased (Fig. 2M). The contact angle decreased from 62 to 41 for PES membranes with 10 ALD cycles. This result showed that PES surfaces were not fully covered by TiO$_2$ during this stage and discrete coating of TiO$_2$ is on the surface of PES layer. At 200 ALD cycles, the contact angle reduced considerably to 11, because of the formation of a continuous film of TiO$_2$. These results suggest that the ALD-coated TiO$_2$ nanoparticles considerably enhance the surface wettability of the PES sublayer, which enables the amine solution to homogeneously spread on the coated support surface. The
tunable wettability toward high hydrophilicity for PES sublayer via ALD coating of TiO$_2$ nanoparticles will further favor in the formation of the PA selective layer [21, 29].

Solution uptake is measured to understand the adsorption and diffusion behavior of MPD. The solution uptake increases from 3.114% for the pristine PES sublayer to 4.781% for the ALD-200-TiO$_2$@PES. According to the results, PES-TiO$_2$ membranes absorb more MPD than pure PES membranes, which enhances the concentration of MPD in the membrane and, subsequently, increases the amount of MPD in the reaction zone for interfacial polymerization. Also, membrane partition coefficient of MPD shows the affinity of MPD to sublayer increase from 0.67 to 1.08 with increasing the ALD cycle of TiO$_2$ coating on the PES membrane (Table 1). In fact, the negatively charged TiO$_2$ layer leads to a strong electrostatic attraction between MPD and PES-TiO$_2$ layer because MPD is positively charged [64]. Also, PES-TiO$_2$ sublayer includes considerable amount of functional groups (hydroxyl) interacting with amine monomers via hydrogen bonds and covalent bonds [16, 22, 31]. Thus, there is a high affinity between MPD and PES-TiO$_2$, which is consistent with membrane partition coefficient of MPD results.

3.2. The properties of PA-TFC-x

After interfacial polymerization, the obtained PA-TFC-x membranes were imaged by FE-SEM. The selective PA layer was found to be full of folded nodular structures and randomly distributed protuberances on the uncoated PES sublayer (Fig. 3A). On the contrary, the surfaces of PA-TFC-x membranes become smoother and smoother with the increased number of ALD cycles as displayed in Fig. 3 (B-E). Moreover, the population and size of nodules also decrease with the increase of the ALD cycles of the TiO$_2$ on the PES support layer. Similar to the surface SEM images, AFM images of the surfaces of PA-TFC-x membranes in Fig. 3 (F-J) also show the decreasing trend in surface roughness. According to Fig. 4A, the polyamide layer on the coated sublayer (PA-TFC-200) has the smoothest surface, exhibiting the Ra value of 54 ± 4.32 nm, 35% lower than that of PA layer on uncoated PES membrane (81.76 ± 14.74 nm). The change in the roughness of PA layers lies mainly in the alteration of wettability and roughness of the underlying support membrane. The aqueous solution of MPD cannot homogenously cover the uncoated PES layer due to the low wettability of the surface and the non-uniform diffusion of MPD during IP process, resulting in rough PA layer. As the roughness and surface wettability of ALD-x-TiO$_2$@PES decreases and increases, respectively, the PA layers turn into smooth, which is in agreement with the literature [29, 50, 53].

The continuous polyamide films were clearly observed on top of the sublayers from the cross-sectional SEM images in Fig. 3 (L-P) and Fig. 3. By comparison of the thickness of the PA selective layer, shown in Fig. 4A and Table S2, it is obvious that the TiO$_2$ coating can lessen the thickness of the PA selective layer, changing from 216.2 ± 12.57 nm for PA on pristine PES membrane to 153.6 ± 9.6 nm for PA-TFC-200. The decreased thickness of the PA layer can be ascribed to two factors, which are also accord with the kinetic model [65, 66] for thin film formation which was presented by Freger [67]. Firstly, the change of IP reaction leads to the different formation of the initial nuclei of the polyamide layers. The primarily formed polyamide layer will have a high degree of crosslinking if there is more amount of MPD in the reaction zone during IP, which were approved by the solution uptake test.

![Fig. 2. Properties of PES sublayer with different TiO$_2$ ALD cycles: (A to E) SEM surface images and AFM images (A, F) pristine PES, (B, G) ALD 10-TiO$_2$@PES, (C, H) ALD 50-TiO$_2$@PES, (D, I) ALD 100-TiO$_2$@PES, (E, J) ALD 200-TiO$_2$@PES, (K) Normalized Ti Peak area in SEM-EDS spectra, (L) Ra surface roughness, and (M) water contact angle.](image-url)

![Table 1](table-url)

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Membrane partition coefficient ($K_m$)</th>
<th>solution uptake (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PES</td>
<td>0.6731</td>
<td>3.114</td>
</tr>
<tr>
<td>ALD-10-TiO$_2$@PES</td>
<td>1.0321</td>
<td>4.162</td>
</tr>
<tr>
<td>ALD-50-TiO$_2$@PES</td>
<td>0.9522</td>
<td>4.238</td>
</tr>
<tr>
<td>ALD-100-TiO$_2$@PES</td>
<td>1.0616</td>
<td>4.516</td>
</tr>
<tr>
<td>ALD-200-TiO$_2$@PES</td>
<td>1.0848</td>
<td>4.781</td>
</tr>
</tbody>
</table>
Fig. 3. SEM and AFM image of the TFC RO membranes (A, F) PA-TFC-0, (B, G) PA-TFC-10, (C, H) PA-TFC-50, (C, H) PA-TFC-100, (E, J) PA-TFC-200. (K to P) cross-sectional SEM images: (K) Pristine PES, (L) PA-TFC-0, (M) PA-TFC-10, (N) PA-TFC-50, (O) PA-TFC-100, and (P) PA-TFC-200.
Fig. 4. Dependency of properties of Polyamide top selective layer of RO TFC membranes on PES/TiO2 sublayer with different ALD cycles (A) Graph showing (Ra) surface roughness and thickness (B) Crosslinking degree.

Then, the further diffusion of MPD will be hindered by the highly crosslinked polyamide film [29]. This nucleation could allow the thinner PA layer with smaller ridges and valleys to be fabricated. Secondly, after formation of the preliminary thin layer of polyamide, amine monomers are uneasingly released through the pores and partitioned into the organic phase [10,34]. The sublayer’s affinity to MPD will affect the penetration of amine monomers through the preliminary layer. There is a high affinity between MPD and PES-TiO2, which is consistent with membrane partition coefficient of MPD results, and contributes to a limited diffusion of amine monomers through the preliminary layer. Also, this confined and regulated amine diffusion would lead to the fabrication of the smoother and thinner selective PA layer [53].

The cross-linking degree and elemental composition of the polyamide active layer were assessed by XPS analysis. Spectra of XPS for TFC with different sublayers are shown in Fig. S2 and the consistent values of element composition, crosslinking degree are listed in Table S3. The XPS survey spectra of TFC membranes illustrate three major peaks of oxygen (O 1 s), carbon (C 1 s) and nitrogen (N 1 s) at the membrane surfaces as an indication of polyamide structure. The elemental composition results show that the O/N ratio of the polyamide layer declines with the increase of ALD cycle of TiO2 on the PES support layer, indicating an increase of crosslinking degree. Based on the solution uptake test by increasing the ALD cycle of TiO2 on the PES sublayer, the amount of amino monomer in the reaction zone increases which leads to the enhancement of polymerization efficiency and progress of the crosslinking degree of the polyamide layer that can be showed by Fig. 4B.

Therefore, presence of TiO2 layer on the PES sublayer increase the amount of MPD in the concentration zone and limit the diffusion rate of the MPD molecules through the IP process. As a consequence, a thin and smooth polyamide skin layer with high cross-linking density and without defect fabricated at the interface.

3.3. Membrane transport properties

Fig. 5 depicts the performance of the PA-TFC-(0, 10, 50, 100, 200). The pure water permeation of the PA-TFC RO membrane rises from 1.4 to 1.8 Lm⁻².h⁻¹.bar⁻¹ for PA-TFC-0 to PA-TFC-100. This observation is expected because the membrane thickness, which is the main transmembrane resistance [68], decreases with the introduction of the TiO2 layer as displayed in the FESEM images of the cross-section (Fig. 3 and Fig. S3). Also, the TiO2 coating on the surface and pores of the support layer makes the water transport path faster and thus improves the water flux. It can also be seen that the NaCl rejection gradually rises at the same time from 92.6 to 96 with the increase of the ALD cycle of the TiO2 on the PES support from 0 to 100. This increase in rejection is because of the increase in the crosslinking degree of the PA layer and formation of the uniform and defect-free PA layer on the sublayer. Once extended the ALD cycle of TiO2 to 200, the TFC RO membranes demonstrated a decline in NaCl rejection (~88%). This trend can be attributed to the enhanced hydrophilicity of the sublayer. As revealed in Fig. 2I, when the ALD cycle is 200, the water contact angle declines below 20°. Therefore, instead of being reserved, the aqueous phase may penetrate through the sublayer which results in a discontinuous PA selective top layer. Accordingly, the salt rejection decreases, and the water permeation increases.

Totally, the ALD coating of TiO2 has been shown to be an effective modification method to tune the sublayer properties and to make a favorable platform for the interfacial polymerization reaction of selective layers. The optimized ALD cycle of TiO2, 100, leads to a PA-TFC RO membrane which had a superior performance (1.8 Lm⁻².h⁻¹.bar⁻¹, 96.1%) compared to that of the PA-TFC membrane on the neat PES sublayer (1.4 Lm⁻².h⁻¹.bar⁻¹, 92.6%). Moreover, table S5 as a comparison between the PA-TFC-x membrane in this study and the commercial PA TFC membranes indicates that the TFC membrane with an interlayer of TiO2 is within the range of or better than the performance of commercial membranes [69].

4. Conclusion

In this study, for the first time the low temperature ALD of TiO2 as a functional nanomaterial was applied to tune the PES sublayer for developing the performance and properties of PA-TFC RO membranes via regulation of the adsorption/diffusion of amine monomer for the IP. The research results indicate that PES-TiO2 platform leads to thin, smooth, no-defect and high cross-linked polyamide selective layer. On the other hand, it should consider a caution when the ALD technique is used because of the hydrophilicity of the coating layer, applying a large number of ALD cycles (200 cycle) will result in the discontinues polyamide layer and decline in the rejection, which is not appropriate in most applications. As a result, the TFC membranes on the sublayer with the optimum TiO2 ALD coating (100 cycle) exhibited the superior performance for both water permeation and salt rejection. Therefore, ALD coating of TiO2 as a functional nanomaterial on the sublayer may be a promising candidate to prepare high performance PA TFC membranes for desalination application to employed in industry.

CRediT authorship contribution statement

Acknowledgements

The authors acknowledge the financially support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), and Nanomaterials and Clean Energy Laboratory at the University of Waterloo.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.desal.2020.114342.

References


Fig. 5. Performance of PA-TFC-x RO membranes (A) Permeance (B) Rejection.