

Solar Energy Materials and Solar Cells Volume 252, April 2023, 112180

Reducing sputter damage-induced recombination losses during deposition of the transparent front-electrode for monolithic perovskite/silicon tandem solar cells

 $\frac{\text{Marlene Härtel}^{a \ b}}{\text{Steve Albrecht}^{a \ b}} \boxtimes , \frac{\text{Bor Li}^{b}}{\boxtimes}, \frac{\text{Silvia Mariotti}^{b \ 1}}{\boxtimes}, \frac{\text{Philipp Wagner}^{b}}{\boxtimes}, \frac{\text{Florian Ruske}^{c}}{\boxtimes}, \frac{\text{Steve Albrecht}^{a \ b}}{\boxtimes}, \frac{\text{Bernd Szyszka}^{a \ d}}{\boxtimes} \boxtimes$

- ^a Technische Universität Berlin, Fakultät Elektrotechnik und Informatik, Marchstraße 23, 10587, Berlin, Germany
- ^b Perovskite Tandem Solar Cells, Helmholtz-Zentrum Berlin, Kekuléstraße 5, 12489, Berlin, Germany
- ^c Active Materials and Interfaces for Stable Perovskite Solar Cells, Helmholtz-Zentrum Berlin, Kekuléstraße 5, 12489, Berlin, Germany
- ^d PVcomB, Helmholtz Zentrum Berlin, Schwarzschildstr. 3, 12489, Berlin, Germany

Received 1 July 2022, Revised 14 October 2022, Accepted 2 January 2023, Available online 11 January 2023, Version of Record 11 January 2023.

Check for updates

Show less 🔨

i≡ Outline 🛛 😪 Share 🗦 Cite

https://doi.org/10.1016/j.solmat.2023.112180

 Get rights and content
 <br/

Highlights

- In perovskite solar cells sputter damage leads to non-radiative recombination losses.
- Sputter damage-induced losses are quantified by light intensity-dependent analysis.
- The effect of sputter damage can be reduced by reducing the sputter power.

.

2/3/23, 11:43 AM

AM Reducing sputter damage-induced recombination losses during deposition of the transparent front-electrode for monolithic perovs... Tin oxide buffer layer-free tandem devices are optically superior.

Abstract

Many research groups work on overcoming the 30% power conversion efficiency (PCE) level for perovskite/silicon tandem solar cells with various approaches. The most common tandem architectures employ a transparent conductive oxide (TCO) front electrode. Due to its fast deposition and up-scalability, sputter deposition is the preferred method for TCO deposition. The sensitive layers of perovskite solar cells are protected from sputter damage by a thermal atomic layer (ALD) deposited tin oxide (SnO₂) buffer layer, which induces parasitic absorption. Here, we propose a method to reveal the impact of sputter damage on SnO₂ buffer layer-free devices. By performing light intensity-dependent current density-voltage (J-V) measurements and thereby reconstructing the single-junction solar cell pseudo J-V characteristics, we could associate sputter damage with trap-assisted non-radiative recombination losses. Additionally, we demonstrate a simple method to minimize sputter damage to the perovskite solar cell to the point where a protective SnO₂ buffer layer is no longer required. By lowering the sputter power density during the TCO deposition, we regained ~13mV open-circuit voltage and ~3% fill factor of the devices, improving the efficiency from 13.55 to 14.17%. We show that these improvements are linked to a reduction of transport and non-radiative recombination losses. Finally, we fabricated optically superior and sputter damage-free monolithic perovskite/silicon tandem devices without needing a protective SnO₂ buffer layer. By doing so, we increased the tandem device current density by 0.52mA/cm², representing a crucial step toward further optimizing the optical performance of tandem devices.

Previous

Next

Keywords

Sputter damage; Perovskite/silicon tandems; Tandems; Transparent conductive oxides; Non-radiative recombination losses; Optical simulation

Special issue articles Recommended articles

Data availability

Data will be made available on request.

Cited by (0)

 Now at Energy Material and Surface Sciences Unit, Okinawa Institute for Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna Son, Okinawa, 904-0495, Japan 2/3/23, 11:43 AM Reducing sputter damage-induced recombination losses during deposition of the transparent front-electrode for monolithic perovs...

View full text

© 2023 Elsevier B.V. All rights reserved.

Copyright © 2023 Elsevier B.V. or its licensors or contributors. ScienceDirect® is a registered trademark of Elsevier B.V.

